解關(guān)于x的方程:x4-2ax2-x+a2-a=0(-0.25≤a<0.75).
考點:二次函數(shù)的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:將原方程化為以a為未知數(shù)的形式,因式分解,進而解方程.
解答: 解:原方程可化為:a2-(2x2+1)a+x4-x=0,
即:[a-x(x-1)][a-(x2+x+1)]=0,
①當(dāng)a-x(x-1)=0時,x=
1
2
±
1+4a
2
;
②當(dāng)a-(x2+x+1)=0時
△=1-4(1-a)=4a-3,
∵-0.25≤a<0.75,
∴△<0,
則方程無解.
綜上所述,x=
1
2
±
1+4a
2
(-0.25≤a<0.75).
點評:本題考查了換參數(shù)思考,將原方程看成以a為未知數(shù)的方程是本題解決的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知E、F、G、H分別是空間四邊形四條邊AB、BC、CD、DA的中點,BD⊥AC.求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2 
1-x
1+x
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某建筑設(shè)計師設(shè)計如圖所示的住宅窗戶,用長度為p m的鋁合金材料做窗框,怎樣確定該窗戶上半圓的半徑和下半矩形的高,才能使窗戶的透光,透氣功能最好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)在[0,5)上為增函數(shù)且f(4-3m)>f(m),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,an+1=3an-4n+2,bn=an-2n,
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{bn}的首項b1及通項公式bn;
(3)求數(shù)列{an}的通項公式an及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上.
(1)求異面直線D1E與A1D所成的角;
(2)若二面角D1-EC-D的大小為45°,求直線BC1與面D1EC所成的角的正切..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品在一個生產(chǎn)周期內(nèi)的總產(chǎn)量為100t,平均分成若干批生產(chǎn).設(shè)每批生產(chǎn)需要投入固定費用75元,而每批生產(chǎn)直接消耗的費用與產(chǎn)品數(shù)量x的平方成正比,已知每批生產(chǎn)10t時,直接消耗的費用為300元(不包括固定的費用).
(1)若每批產(chǎn)品數(shù)量為20t,求此產(chǎn)品在一個生產(chǎn)周期的總費用(固定費用和直接消耗的費用).
(2)設(shè)每批產(chǎn)品數(shù)量為xt,一個生產(chǎn)周期內(nèi)的總費用y元,求y與x的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
e
+
1
ex
(e≈2.718),若滿足f(|a|+3)>f(|a+4|+1),求實數(shù)a的取值范圍
 

查看答案和解析>>

同步練習(xí)冊答案