【題目】為方便市民休閑觀光,市政府計劃在半徑為200米,圓心角為120°的扇形廣場內(nèi)(如圖所示),沿△ABC邊界修建觀光道路,其中A、B分別在線段CP、CQ上,且A、B兩點間距離為定長 米.

(1)當(dāng)∠BAC=45°時,求觀光道BC段的長度;
(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中A、B兩點的位置,使觀光道路總長度達到最長?并求出總長度的最大值.

【答案】
(1)解:在△ABC中,由已知及正弦定理得 ,


(2)解:設(shè)CA=x,CB=y,x,y∈(0,200],

在△ABC中,AB2=AC2+CB2﹣2ACCBcos120°,即 ,

,

故x+y≤120,當(dāng)且僅當(dāng)x=y=60時,x+y取得最大值,

∴當(dāng)A、B兩點各距C點60米處時,觀光道路總長度達到最長,最長為


【解析】(1)由已知及正弦定理即可得解BC的值.(2)設(shè)CA=x,CB=y,x,y∈(0,200],利用余弦定理可求 ,結(jié)合基本不等式可求x+y≤120,從而可求觀光道路總長度最長值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有一道這樣的題目:把100個面包分給5個人,使每個人所得成等差數(shù)列,且使較大的三份之和的 是較小的兩份之和,問最小一份為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,側(cè)面PBC⊥底面ABCD,點M在AB上,且AM:MB=1:2,E為PB的中點.

(1)求證:CE∥平面ADP;
(2)求證:平面PAD⊥平面PAB;
(3)棱AP上是否存在一點N,使得平面DMN⊥平面ABCD,若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C所對的邊分別為a,b,c,S表示三角形的面積,若asinA+bsinB=csinC,且S= ,則對△ABC的形狀的精確描述是(
A.直角三角形
B.等腰三角形
C.等腰或直角三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合{φ|f(x)=sin[(x﹣2φ)π]+cos[(x﹣2φ)π]為奇函數(shù),且|logaφ|<1}的子集個數(shù)為4,則a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個圓經(jīng)過直線l:2x+y+4=0與圓C:x2+y2+2x﹣4y=0的兩個交點,并且有最小面積,則此圓的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中既是奇函數(shù)又是增函數(shù)的是(
A.y=x3+x
B.y=logax
C.y=3x
D.y=﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[﹣ , ]時,求函數(shù)y=f(x+ )﹣ f(x+ )的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,D,E分別是BC,A1B1的中點.
(1)求證:DE∥平面ACC1A1;
(2)設(shè)M為AB上一點,且AM= AB,若直三棱柱ABC﹣A1B1C1的所有棱長均相等,求直線DE與直線A1M所成角的正切值.

查看答案和解析>>

同步練習(xí)冊答案