A. | 2 | B. | 4 | C. | 5 | D. | 6 |
分析 先根據(jù)條件畫出可行域,設z=x+3y,再利用幾何意義求最值,將最小值轉化為y軸上的截距最大,只需求出直線z=x+3y,取得截距的最小值,從而得到z最小值即可.
解答 解:作出不等式組所表示的平面區(qū)域,由z=x+3y可得y=-$\frac{1}{3}$x+$\frac{1}{3}$z.
則$\frac{1}{3}$z為直線y=-$\frac{1}{3}$x+$\frac{1}{3}$z在y軸上的截距,截距越小,z越小,
作直線L:x+3y=0,然后把直線L向可行域方向平移,當經(jīng)過點B時,z最小
由$\left\{\begin{array}{l}{x+y-2=0}\\{x-y-2=0}\end{array}\right.$可得B(2,0),此時z=2
故選:A.
點評 借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com