(本小題滿分10分)

福州市某大型家電商場為了使每月銷售空調(diào)和冰箱獲得的總利潤達到最大,對某月即將出售的空調(diào)和冰箱進行了相關(guān)調(diào)查,得出下表:

資金

每臺空調(diào)或冰箱所需資金(百元)

月資金最多供應量

(百元)

空調(diào)

冰箱

進貨成本

30

20

300

工人工資

5

10

110

每臺利潤

6

8

 

問:如果根據(jù)調(diào)查得到的數(shù)據(jù),該商場應該怎樣確定空調(diào)和冰箱的月供應量,才能使商場獲得的總利潤最大?總利潤的最大值為多少元?

 

【答案】

每月調(diào)進空調(diào)和冰箱分別為4臺和9臺,總利潤最大,最大值為9600元.

【解析】

試題分析:先設空調(diào)和冰箱的月供應量分別為x,y臺,月總利潤為z百元,依題意得列出約束條件和目標函數(shù),最后依據(jù)線性規(guī)則的方法求出目標函數(shù)的最大值即可.

解:設每月調(diào)進空調(diào)和冰箱分別為臺,總利潤為 (百元)則由題意,得

  目標函數(shù)是 ,

  畫圖,得 的交點是

  (百元)

所以,每月調(diào)進空調(diào)和冰箱分別為4臺和9臺,總利潤最大,最大值為9600元.

考點:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題。

點評:解決該試題的關(guān)鍵是.目標函數(shù)有唯一最優(yōu)解是最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點、定出最優(yōu)解

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數(shù)方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標系中,A為曲線ρ2+2ρcosθ-3=0上的動點,B為直線ρcosθ+ρsinθ-7=0上的動點,求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

必做題:(本小題滿分10分,請在答題指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟)
已知an(n∈N*)是二項式(2+x)n的展開式中x的一次項的系數(shù).
(Ⅰ)求an;
(Ⅱ)是否存在等差數(shù)列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對一切正整數(shù)n都成立?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分10分)數(shù)學的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請您設計一個算法,找出大于100,小于1000的所有“水仙花數(shù)”.
(1)用自然語言寫出算法;
(2)畫出流程圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-2:矩陣與變換)(本小題滿分10分)
求矩陣A=
32
21
的逆矩陣.

查看答案和解析>>

同步練習冊答案