橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在橢圓C上,且PF1⊥F1F2,|PF1|=,|PF2|=.
(1)求橢圓C的方程;
(2)若直線(xiàn)l過(guò)圓x2+y2+4x-2y=0的圓心M,交橢圓C于A、B兩點(diǎn),且A、B關(guān)于點(diǎn)M對(duì)稱(chēng),求直線(xiàn)l的方程.
解法一:(1)因?yàn)辄c(diǎn)P在橢圓C上,所以2a=|PF1|+|PF2|=6,a=3.
在Rt△PF1F2中,|F1F2|=,故橢圓的半焦距c=,從而b2=a2-c2=4,所以橢圓C的方程為=1.
(2)設(shè)A、B的坐標(biāo)分別為(x1,y1),(x2,y2).
已知圓的方程為(x+2)2+(y-1)2=5,所以圓心M的坐標(biāo)為(-2,1),從而可設(shè)直線(xiàn)l的方程為y=k(x+2)+1,代入橢圓C的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.
因?yàn)锳、B關(guān)于點(diǎn)M對(duì)稱(chēng),所以=-2,
解得k=.
所以直線(xiàn)l的方程為y=(x+2)+1,即8x-9y+25=0.
(經(jīng)檢驗(yàn),所求直線(xiàn)方程符合題意)
解法二:(1)同解法一.
(2)已知圓的方程為(x+2)2+(y-1)2=5,所以圓心M的坐標(biāo)為(-2,1).
設(shè)A、B的坐標(biāo)分別為(x1,y1),(x2,y2).
由題意x1≠x2且 、
、
由①-②得 、
因?yàn)锳、B關(guān)于點(diǎn)M對(duì)稱(chēng),
所以x1+x2=-4,y1+y2=2.
代入③得,即直線(xiàn)l的斜率為,所以直線(xiàn)l的方程為y-1=(x+2),即8x-9y+25=0.
(經(jīng)檢驗(yàn),所求直線(xiàn)方程符合題意)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知方向向量為的直線(xiàn)過(guò)橢圓C:=1(a>b>0)的焦點(diǎn)以及點(diǎn)(0,),橢圓C的中心關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在橢圓C的右準(zhǔn)線(xiàn)上。
⑴求橢圓C的方程。
⑵過(guò)點(diǎn)E(-2,0)的直線(xiàn)交橢圓C于點(diǎn)M、N,且滿(mǎn)足,(O為坐標(biāo)原點(diǎn)),求直線(xiàn)的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省微山一中高二上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題
設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點(diǎn),過(guò)F2的直線(xiàn)l與橢圓C相交于A,B兩點(diǎn),直線(xiàn)l的傾斜角為60°,F(xiàn)1到直線(xiàn)l的距離為2.
(1)求橢圓C的焦距;
(2)如果=2,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省高二上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題
設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點(diǎn),過(guò)F2的直線(xiàn)l與橢圓C相交于A,B兩點(diǎn),直線(xiàn)l的傾斜角為60°,F(xiàn)1到直線(xiàn)l的距離為2.
(1)求橢圓C的焦距;
(2)如果=2,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:=1(a>b>0)的右準(zhǔn)線(xiàn)l的方程為x=,短軸長(zhǎng)為2.
(1)求橢圓C的方程;
(2)過(guò)定點(diǎn)B(1,0)作直線(xiàn)l與橢圓C相交于P,Q(異于A1,A2)兩點(diǎn),設(shè)直線(xiàn)PA1與直線(xiàn)QA2相交于點(diǎn)M(2x0,y0).
①試用x0,y0表示點(diǎn)P,Q的坐標(biāo);
②求證:點(diǎn)M始終在一條定直線(xiàn)上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:=1(a>b>0)的右準(zhǔn)線(xiàn)l的方程為x=,短軸長(zhǎng)為2.
(1)求橢圓C的方程;
(2)過(guò)定點(diǎn)B(1,0)作直線(xiàn)l與橢圓C相交于P,Q(異于A1,A2)兩點(diǎn),設(shè)直線(xiàn)PA1與直線(xiàn)QA2相交于點(diǎn)M(2x0,y0).
①試用x0,y0表示點(diǎn)P,Q的坐標(biāo);
②求證:點(diǎn)M始終在一條定直線(xiàn)上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com