【題目】正方體的棱長為,動點(diǎn)在對角線上,過點(diǎn)作垂直于的平面,記平面截正方體得到的截面多邊形(含三角形)的周長為,設(shè),.

1)下列說法中,正確的編號為______.

①截面多邊形可能為六邊形;②;③函數(shù)的圖象關(guān)于對稱.

2)當(dāng)時,三棱錐的外接球的表面積為______.

【答案】①③

【解析】

1)運(yùn)用正方體的對角線的性質(zhì)和對稱性,得到截面為正三角性或正六邊形,計算即可得到結(jié)論;

2)確定外接圓的球心在OP上,運(yùn)用勾股定理求得球的半徑,利用表面積公式,即可求解.

1)正方體的棱長為2,可得對角線長為,

對于①中,由線面垂直的判定定理和性質(zhì),可得平面

當(dāng)截面經(jīng)過中點(diǎn)時,此時得到的截面垂直與,且為正六邊形,所以截面多邊形可能為六邊形,所以是正確的;

對于②中,當(dāng)時,可得截面為等邊,如圖所示,

設(shè)等邊的邊長為,可得,

在直角中,可得,即

解得,所以截面的周長,所以②不正確;

③根據(jù)正方體的對稱性,可得函數(shù)的圖象關(guān)于對稱,所以是正確的;

2)由正方體的棱長為2,可得對角線長為

當(dāng)時,可得點(diǎn)恰為對角線的中點(diǎn),則P在底面上的射影為AC的中點(diǎn),

由球的性質(zhì),可得球心上,

設(shè)球的半徑為,可得,即,解得,

所以三棱錐為外接球的表面積為.

故答案為:①③,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為了更好地應(yīng)對新型冠狀病毒肺炎疫情,對單位的職工進(jìn)行防疫知識培訓(xùn),所有職工選擇網(wǎng)絡(luò)在線培訓(xùn)和線下培訓(xùn)中的一種方案進(jìn)行培訓(xùn).隨機(jī)抽取了140人的培訓(xùn)成績,統(tǒng)計發(fā)現(xiàn)樣本中40個成績來自線下培訓(xùn)職工,其余來自在線培訓(xùn)的職工,并得到如下統(tǒng)計圖表:

線下培訓(xùn)莖葉圖在線培訓(xùn)直方圖

1)得分90分及以上為成績優(yōu)秀,完成下邊列聯(lián)表,并判斷是否有的把握認(rèn)為成績優(yōu)秀與培訓(xùn)方式有關(guān)?

優(yōu)秀

非優(yōu)秀

合計

線下培訓(xùn)

在線培訓(xùn)

合計

2)成績低于60分為不合格.在樣本的不合格個體中隨機(jī)再抽取3個,其中在線培訓(xùn)個數(shù)是,求分布列與數(shù)學(xué)期望.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的極值;

2)證明:時,

3)若函數(shù)有且只有三個不同的零點(diǎn),分別記為,設(shè)的最大值是,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求的最小值;

2)若函數(shù)上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)各有張卡片,現(xiàn)以投擲一枚骰子的形式進(jìn)行游戲,當(dāng)擲出奇數(shù)點(diǎn)時.甲贏得乙卡片一張,當(dāng)擲出偶數(shù)點(diǎn)時,乙贏得甲卡片一張.規(guī)定投擲的次數(shù)達(dá)到次,或在此之前某入贏得對方所有卡片時,游戲終止.

1)設(shè)表示游戲終止時投擲的次數(shù),求的分布列及期望;

2)求在投擲次游戲才結(jié)束的條件下,甲、乙沒有分出勝負(fù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)點(diǎn)的極坐標(biāo)為.

1)求曲線的極坐標(biāo)方程;

2)若過點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】恩格爾系數(shù)是食品支出總額占個人消費(fèi)支出總額的比重,其數(shù)值越小說明生活富裕程度越高.統(tǒng)計改革開放40年來我國歷年城鎮(zhèn)和農(nóng)村居民家庭恩格爾系數(shù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是(

A.城鎮(zhèn)居民家庭生活富裕程度不低于農(nóng)村居民家庭

B.隨著改革開放的不斷深入,城鎮(zhèn)和農(nóng)村居民家庭生活富裕程度越來越高

C.1996年開始城鎮(zhèn)和農(nóng)村居民家庭恩格爾系數(shù)都低于50%

D.隨著城鄉(xiāng)一體化進(jìn)程的推進(jìn),城鎮(zhèn)和農(nóng)村居民家庭生活富裕程度差別越來越小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且四個頂點(diǎn)構(gòu)成的四邊形的面積是.

1)求橢圓的方程;

2)已知直線經(jīng)過點(diǎn),且不垂直于軸,直線與橢圓交于,兩點(diǎn),的中點(diǎn),直線與橢圓交于,兩點(diǎn)(是坐標(biāo)原點(diǎn)),若四邊形的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】6名黨員干部分配到4個貧困村駐村扶貧,每個貧困村至少分配1名黨員干部,則不同的分配方案共有(

A.2640B.4800C.1560D.7200

查看答案和解析>>

同步練習(xí)冊答案