【題目】已知曲線的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)點(diǎn)的極坐標(biāo)為.
(1)求曲線的極坐標(biāo)方程;
(2)若過點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求的值.
【答案】(1)的極坐標(biāo)方程為:(2)
【解析】
(1) 由曲線的參數(shù)方程得出其普通方程,利用坐標(biāo)變換得出的方程,再轉(zhuǎn)化為極坐標(biāo)方程;
(2)利用直線的參數(shù)方程的參數(shù)的幾何意義求解即可.
解:(1)曲線的普通方程為:,
將曲線上的點(diǎn)按坐標(biāo)變換得到,代入得的方程為:.
化為極坐標(biāo)方程為:.
(2)點(diǎn)在直角坐標(biāo)的坐標(biāo)為,
因?yàn)橹本過點(diǎn)且傾斜角為,
設(shè)直線的參數(shù)方程為(為參數(shù)),
代入得:.
設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,
則.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)若函數(shù)在上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C的右焦點(diǎn)F作直線l交橢圓C于A、B兩點(diǎn),交y軸于M點(diǎn),若,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱長(zhǎng)為,動(dòng)點(diǎn)在對(duì)角線上,過點(diǎn)作垂直于的平面,記平面截正方體得到的截面多邊形(含三角形)的周長(zhǎng)為,設(shè),.
(1)下列說法中,正確的編號(hào)為______.
①截面多邊形可能為六邊形;②;③函數(shù)的圖象關(guān)于對(duì)稱.
(2)當(dāng)時(shí),三棱錐的外接球的表面積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某銀行推銷甲、乙兩種理財(cái)產(chǎn)品(每種產(chǎn)品限購30萬).每一件產(chǎn)品根據(jù)訂單金額不同劃分為:訂單金額不低于20萬為大額訂單,低于20萬為普通訂單.銀監(jiān)部門隨機(jī)調(diào)取購買這兩種產(chǎn)品的客戶各100戶,對(duì)他們的訂單進(jìn)行分析,得到如圖所示的頻率分布直方圖:
將此樣本的頻率估計(jì)視為總體的概率.購買一件甲產(chǎn)品,若是大額訂單可盈利2萬元,若是普通訂單則虧損1萬元,購買一件乙產(chǎn)品,若是大額訂單可盈利1.5萬元,若是普通訂單則虧損0.5萬元.
(1)記X為購買1件甲產(chǎn)品和1件乙產(chǎn)品所得的總利潤(rùn),求隨機(jī)變量X的數(shù)學(xué)期望;
(2)假設(shè)購買4件甲產(chǎn)品和4件乙產(chǎn)品所獲得的利潤(rùn)相等.
(i)這4件甲產(chǎn)品和4件乙產(chǎn)品中各有大額訂單多少件?
(ⅱ)這4件甲產(chǎn)品和4件乙產(chǎn)品中大額訂單的概率哪個(gè)大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)分別是橢圓的上、下頂點(diǎn),線段長(zhǎng)為,橢圓的離心率為.
(1)求該橢圓的方程;
(2)已知過點(diǎn)的直線與橢圓交于兩點(diǎn),直線與直線交于點(diǎn).
①若直線的斜率為,求點(diǎn)的坐標(biāo);
②求證點(diǎn)在一條定直線上,并寫出該直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),傾斜角為.在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.
(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求證:在區(qū)間上無零點(diǎn);
(2)求證:有且僅有2個(gè)零點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com