P、Q、R三點(diǎn)分別在直四棱柱AC1的棱BB1、 CC1、 DD1上, 且BP=BB1,DR=DD1, C1Q=CC1, 那么過(guò)P、Q、R三點(diǎn)的截面是

[    ]

A.三角形   B.四邊形   C.五邊形   D.六邊形

答案:C
解析:

作法: ⑴連結(jié)QP、QR并延長(zhǎng)分別交CB、CD的延長(zhǎng)線于E、F.

      ⑵連結(jié)E、F,交AB于T, 交AD于S. 

      ⑶連結(jié)RS、TP, 則多邊形PQRST即為所求截面(如圖).


提示:

思考: 截面與棱柱各面的交線位置

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、下列命題中正確的有幾個(gè)( 。
①若△ABC在平面α外,它的三條邊所在的直線分別交α于P、Q、R,則P、Q、R三點(diǎn)共線;
②若三條直線a、b、c互相平行且分別交直線l于A、B、C三點(diǎn),則這四條直線共面;
③空間中不共面五個(gè)點(diǎn)一定能確定10個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、下列命題中正確的是
①②

①若△ABC在平面α外,它的三條邊所在的直線分別交α于P、Q、R,則P、Q、R三點(diǎn)共線;
②若三條直線a、b、c互相平行且分別交直線l于A、B、C三點(diǎn),則這四條直線共面;
③空間中不共面的五個(gè)點(diǎn)一定能確定10個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖,已知△ABCα外,其三邊所在的直線分別交αP 、Q R ,求證:P Q 、R三點(diǎn)共線;

(2)如圖,ABCD ,E F 、G 、H分別是AB 、BC 、CD 、DA上的點(diǎn),若EHFG=P.求證:P點(diǎn)在直線BD上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC在平面α外,它的三邊所在直線分別交平面α于點(diǎn)P、Q、R,求證:P、Q、R三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊(cè)答案