已知f(x)=
x,x≥0
-1,x<0
,則不等式f(x+2)≤3的解集是
 
分析:由已知中函數(shù)f(x)=
x,x≥0
-1,x<0
是一個分段函數(shù),故可以將不等式f(x+2)≤3分類討論,分x+2≥0和x+2<0兩種情況,分別進行討論,綜合討論結(jié)果,即可得到答案.
解答:解:當x+2≥0,即x≥-2時,
不等式f(x+2)≤3可化為x+2≤3,解得x≤1
∴-2≤x≤1
當x+2<0,即x<-2時,-1≤3恒成立
綜上不等式f(x+2)≤3的解集為(-∞,1]
故答案為:(-∞,1]
點評:本題考查的知識點是分段函數(shù)的解析式,及不等式的解法,其中根據(jù)分段函數(shù)分段處理的原則,對不等式f(x+2)≤3的變形進行分類討論,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若k=
1
3
,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間[
1
2
,a]
上的值域為[
1
a
,1]
,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|x-1|+|x+2|.
(1)解不等式f(x)≥5;
(2)若關(guān)于x的不等式f(x)>a2-2a對于任意的x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的解析式.
(1)已知f(x)=x2+2x,求f(2x+1)
(2)已知f(x)為二次函數(shù),且滿足f (0)=1,f(x+1)-f(x)=2x,求f(x)
(3)已知2f(
1x
)+f(x)=x(x≠0),求f(x)
(4)若f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=x(2-x),求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域為數(shù)學(xué)公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案