分析 將a2+b2+c2分拆為a2+($\frac{1}{9}$+$\frac{8}{9}$)b2+($\frac{2}{9}$+$\frac{7}{9}$)c2 是解決本題的關(guān)鍵,再運用基本不等式a2+b2≥2ab求最值.
解答 解:因為5=a2+b2+c2=a2+($\frac{1}{9}$+$\frac{8}{9}$)b2+($\frac{2}{9}$+$\frac{7}{9}$)c2
=(a2+$\frac{1}{9}$b2)+($\frac{8}{9}$b2+$\frac{2}{9}$c2)+$\frac{7}{9}$c2
≥$\frac{2}{3}$|ab|+$\frac{8}{9}$|bc|+$\frac{7}{9}$c2
≥$\frac{2}{3}$ab-$\frac{8}{9}$bc+$\frac{7}{9}$c2
=$\frac{1}{9}$[6ab-8bc+7c2],
所以,6ab-8bc+7c2≤9×5=45,
即6ab-8bc+7c2的最大值為45,當且僅當:a2=$\frac{1}{9}$b2,$\frac{8}{9}$b2=$\frac{2}{9}$c2,
解得,a2=$\frac{5}{46}$,b2=$\frac{45}{46}$,c2=$\frac{180}{46}$,且它們的符號分別為:a>0,b>0,c<0或a<0,b<0,c>0.
故答案為:45.
點評 本題主要考查了基本不等式在求最值問題中的應(yīng)用,以及基本不等式取等條件的確定,充分考查了等價轉(zhuǎn)化思想與合理分拆的運算技巧,屬于難題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com