9.若sinα+sinβ=1-$\frac{\sqrt{3}}{2}$,cosα+cosβ=$\frac{1}{2}$.則cos(α-β)的值為( 。
A.$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.1

分析 對sinα+sinβ=1-$\frac{\sqrt{3}}{2}$與cosα+cosβ=$\frac{1}{2}$等號兩端分別平方后相加,即可求得答案.

解答 解:∵sinα+sinβ=1-$\frac{\sqrt{3}}{2}$①,
cosα+cosβ=$\frac{1}{2}$②,
∴①2+②2得:
sin2α+sin2β+2sinα•sinβ+cos2α+cos2β+2cosα•cosβ=(1-$\frac{\sqrt{3}}{2}$)2+($\frac{1}{2}$)2,
即2+2cos(α-β)=1-$\sqrt{3}$+$\frac{3}{4}$+$\frac{1}{4}$,
∴cos(α-β)=-$\frac{\sqrt{3}}{2}$.
故選:B.

點評 本題考查兩角差的余弦,考查同角三角函數(shù)間的關系,考查運算求解能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.實數(shù)a、b、c滿足a2+b2+c2=5.則6ab-8bc+7c2的最大值為45.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.3個不同的平面最多將空間分成a部分,最少將空間分成b部分,則b-a=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,AE⊥PD于點E,l⊥平面PCD,求證:l∥AE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知x∈[-$\frac{2π}{3}$,$\frac{π}{6}$],求函數(shù)f(x)=3cos2x+5sinx-4的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知m≥1,n≥1,且滿足$lo{{g}_{a}}^{2}$m+$lo{{g}_{a}}^{2}$n=loga(am2)+loga(an2)(a>1),求loga(mn)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖是函數(shù)f(x)=x3+bx2+cx+d的大致圖象,則x1+x2等于( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{12}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.f(x)=(log3 x)2+(a-1)log3x+3a-2,(x>0,a∈R).
(1)若函數(shù)f(x)的值域是[2,+∞),求a的值;
(2)若f(3x)+log3(9x)≤0對于任意x∈[3,9]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知sin(π+α)=-$\frac{3}{5}$,求$\frac{sin(3π+α)tan(2π+α)cos(5π+α)}{tan(π+α)tan(3π+α)sin(2π+α)}$的值.

查看答案和解析>>

同步練習冊答案