在△ABC中,角A、B、C的對(duì)邊分別a、b、c,已知a+b=5,c=
7
,且sin22C+sin2C•sinC+cos2C=1.
(Ⅰ)求角C的大。
(Ⅱ)求△ABC的面積.
考點(diǎn):正弦定理,余弦定理
專題:解三角形
分析:(Ⅰ)通過二倍角公式化簡(jiǎn)已知表達(dá)式,求出cosC的值,然后在三角形中求角C的大小;
(Ⅱ)結(jié)合(Ⅰ)通過余弦定理,求出ab的值,然后直接求△ABC的面積.求角C的大。
解答: 解:(Ⅰ)∵sin22C+sin2C•sinC+cos2C=1,
∴4sin2Ccos2C+2sin2CcosC+1-2sin2C=1,
整理得:2cos2C+cosC-1=0,即cosC=
1
2
,
則C=60°;
(Ⅱ)由余弦定理可知:cosC=
a2+b2-c2
2ab
=
(a+b)2-2ab-c2
2ab
=
1
2
,
25-2ab-7
2ab
=
1
2
,即ab=6,
∴S△ABC=
1
2
absinC=
3
3
2
點(diǎn)評(píng):此題考查了余弦定理,以及三角形面積公式,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將正奇數(shù)組成的數(shù)列{an}的項(xiàng),1,3,5,7,9,11,…,按如表排成5列:
 第1列第2列第3列第4列第5列
第一行 1357
第二行1513119 
第三行 17192123
第四行2725 
(Ⅰ)求第五行到第十行的所有數(shù)的和.
(Ⅱ)已知點(diǎn)A1(a1,b1),A2(a2,b2),…,An(an,bn)在指數(shù)函數(shù)y=2x的圖象上,若Sn=an•bn,求S1+S2+…+Sn的值Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓P在x軸上截得線段長(zhǎng)為2
2
,在y軸上截得線段長(zhǎng)為2
3

(Ⅰ)求圓心P的軌跡方程;
(Ⅱ)若P點(diǎn)到直線y=x的距離為
2
2
,求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖.其中成績(jī)分組區(qū)間如下:
組號(hào)第一組第二組第三組第四組第五組
分組[50,60)[60,70)[70,80)[80,90)[90,100)
(Ⅰ)求圖中a的值;
(Ⅱ)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生進(jìn)行試卷分析,求第3、4、5組各抽取多少名學(xué)生?
(Ⅲ)在(Ⅱ)的前提下,決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生面試,求:第4組至少有一名學(xué)生被面試的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-a
ax
(a>0)
(1)判斷f(x)的奇偶性,并說明理由;
(2)若方程f(x)=x有且只有一個(gè)根,求實(shí)數(shù)a的值,并求出該根;
(3)若方程關(guān)于x的方程f(ex)=ex+1有兩個(gè)不同的根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+2bx,g(x)=b+lnx(a∈[-1,2],b∈R,b≠0)
(Ⅰ)求命題A:“函數(shù)f(x)的圖象是開口向上的拋物線”為真命題的概率;
(Ⅱ)若a∈Z,b∈{-2,-1,1,2},寫出所有的數(shù)對(duì)(a,b).設(shè)函數(shù)φ(x)=
f(x),x≤1
g(x),x>1
,記“?x1,x2∈[1,+∞),x1≠x2,
φ(x1)-φ(x2)
x1-x2
>0”為事件B,求事件B發(fā)生的概率P(B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x丨0≤x≤2},B={x丨a≤x≤a+3}.
(1)若(∁RA)∪B=R,求a的取值范圍;
(2)是否存在實(shí)數(shù)a使(∁RA)∪B=R且A∩B=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)都不相等的等差數(shù)列{an}的前五項(xiàng)和為30,且a2是a1和a4的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(2)若數(shù)列{bn}滿足bn=
1
Sn
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

班主任對(duì)小明、小華的學(xué)習(xí)成績(jī)進(jìn)行抽樣分析,各抽5門功課,得到的觀測(cè)值如下:
小明6080709070
小華8060708075
問:小明、小華兩人誰的平均成績(jī)高?誰的各門功課發(fā)展較平衡?

查看答案和解析>>

同步練習(xí)冊(cè)答案