【題目】己知函數(shù)
(1)當(dāng)時(shí),設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間和極值;
(2)設(shè)是的導(dǎo)函數(shù),若對(duì)任意的恒成立,求的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),求在區(qū)間上的最大值和最小值.
【答案】(1)當(dāng),單調(diào)遞減; 單調(diào)遞增, 當(dāng),取得極小值;(2) ;(3) 的最大值,的最小值.
【解析】
(1)把代入可得,對(duì)求導(dǎo)可得其單調(diào)區(qū)間和極值;
(2)對(duì)求導(dǎo)可得在恒成立,設(shè),對(duì)求導(dǎo),可得有最小值,可得的取值范圍;
(3)對(duì)求導(dǎo),可得當(dāng),單調(diào)遞增,當(dāng),單調(diào)遞減,可得可得的最大值,設(shè),對(duì)求導(dǎo),可得的最小值.
解:(1)當(dāng)時(shí),,可得,
令,可得,
當(dāng)時(shí),,單調(diào)遞減;
當(dāng),單調(diào)遞增;
可得當(dāng),取得極小值;
(2),,
即,在恒成立,
設(shè),可得,
令,可得,
當(dāng),,函數(shù)單調(diào)遞減,
當(dāng),,函數(shù)單調(diào)遞增,
當(dāng)有最小值,可得,
,;
(3)由,可得,
當(dāng),可得,
所以,單調(diào)遞增;
當(dāng)時(shí),,
所以,單調(diào)遞減;
可得在單調(diào)遞增,在單調(diào)遞減,
又,可得的最大值
設(shè)
其中,可得,
故在單調(diào)遞增,可得,即,
故可得的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)構(gòu)為了了解不同年齡的人對(duì)一款智能家電的評(píng)價(jià),隨機(jī)選取了50名購(gòu)買該家電的消費(fèi)者,讓他們根據(jù)實(shí)際使用體驗(yàn)進(jìn)行評(píng)分.
(Ⅰ)設(shè)消費(fèi)者的年齡為,對(duì)該款智能家電的評(píng)分為.若根據(jù)統(tǒng)計(jì)數(shù)據(jù),用最小二乘法得到關(guān)于的線性回歸方程為,且年齡的方差為,評(píng)分的方差為.求與的相關(guān)系數(shù),并據(jù)此判斷對(duì)該款智能家電的評(píng)分與年齡的相關(guān)性強(qiáng)弱.
(Ⅱ)按照一定的標(biāo)準(zhǔn),將50名消費(fèi)者的年齡劃分為“青年”和“中老年”,評(píng)分劃分為“好評(píng)”和“差評(píng)”,整理得到如下數(shù)據(jù),請(qǐng)判斷是否有的把握認(rèn)為對(duì)該智能家電的評(píng)價(jià)與年齡有關(guān).
好評(píng) | 差評(píng) | |
青年 | 8 | 16 |
中老年 | 20 | 6 |
附:線性回歸直線的斜率;相關(guān)系數(shù),獨(dú)立性檢驗(yàn)中的,其中.
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,垂直于以為直徑的圓所在的平面,點(diǎn)是圓周上異于,的任意一點(diǎn),則下列結(jié)論中正確的是( )
①
②
③平面
④平面平面
⑤平面平面
A.①②⑤B.②⑤C.②④⑤D.②③④⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如表所示:
積極參加班級(jí)工作 | 不積極參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性不高 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,求事件A:抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性不高的學(xué)生的概率;
若不積極參加班級(jí)工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項(xiàng)活動(dòng),請(qǐng)用字母代表不同的學(xué)生列舉出抽取的所有可能結(jié)果;
在的條件下,求事件B:兩名學(xué)生中恰有1名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間他們參加5項(xiàng)預(yù)賽,成績(jī)?nèi)缦拢?/span>
甲:78 76 74 90 82
乙:90 70 75 85 80
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從平均數(shù)、方差的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下結(jié)論正確的個(gè)數(shù)是( )
①若數(shù)列中的最大項(xiàng)是第項(xiàng),則.
②在中,若,則為等腰直角三角形.
③設(shè)、分別為等差數(shù)列與的前項(xiàng)和,若,則.
④的內(nèi)角、、的對(duì)邊分別為、、,若、、成等比數(shù)列,且,則.
⑤在中,、、分別是、、所對(duì)邊,,則的取值范圍為.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com