【題目】為了配合今年上海迪斯尼游園工作,某單位設(shè)計(jì)了統(tǒng)計(jì)人數(shù)的數(shù)學(xué)模型:以表示第個時(shí)刻進(jìn)入園區(qū)的人數(shù);以表示第個時(shí)刻離開園區(qū)的人數(shù).設(shè)定以分鐘為一個計(jì)算單位,上午點(diǎn)分作為第個計(jì)算人數(shù)單位,即;點(diǎn)分作為第個計(jì)算單位,即;依次類推,把一天內(nèi)從上午點(diǎn)到晚上點(diǎn)分分成個計(jì)算單位(最后結(jié)果四舍五入,精確到整數(shù)).

1)試計(jì)算當(dāng)天點(diǎn)至點(diǎn)這一小時(shí)內(nèi),進(jìn)入園區(qū)的游客人數(shù)、離開園區(qū)的游客人數(shù)各為多少?

2)假設(shè)當(dāng)日園區(qū)游客總?cè)藬?shù)達(dá)到或超過萬時(shí),園區(qū)將采取限流措施.該單位借助該數(shù)學(xué)模型知曉當(dāng)天點(diǎn)(即)時(shí),園區(qū)總?cè)藬?shù)會達(dá)到最高,請問當(dāng)日是否要采取限流措施?說明理由.

【答案】117460人,9000人;(2)不會,理由見解析.

【解析】

1)根據(jù)函數(shù)解析式代入數(shù)據(jù)計(jì)算得到答案.

2)計(jì)算時(shí),進(jìn)入園區(qū)總?cè)藬?shù),離開園區(qū)總?cè)藬?shù),得到,小于萬得到答案.

1)當(dāng)天點(diǎn)至點(diǎn)這一小時(shí)內(nèi)進(jìn)入園區(qū)人數(shù)為

(人)

離開園區(qū)的人數(shù)(人)

2)當(dāng)天下午點(diǎn)()時(shí)

進(jìn)入園區(qū)人數(shù)為

(人)

此時(shí),離開園區(qū)的人數(shù)

此時(shí),園區(qū)共有游客為(人)

因?yàn)?/span>,所以當(dāng)天不會采取限流措施.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人同時(shí)參加一次數(shù)學(xué)測試,共有道選擇題,每題均有個選項(xiàng),答對得分,答錯或不答得分.甲和乙都解答了所有的試題,經(jīng)比較,他們只有道題的選項(xiàng)不同,如果甲最終的得分為分,那么乙的所有可能的得分值組成的集合為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是一塊平行四邊形園地,經(jīng)測量,.擬過線段上一點(diǎn) 設(shè)計(jì)一條直路(點(diǎn)在四邊形的邊上,不計(jì)直路的寬度),將該園地分為面積之比為的左,右兩部分分別種植不同花卉.設(shè)(單位:m.

1)當(dāng)點(diǎn)與點(diǎn)重合時(shí),試確定點(diǎn)的位置;

2)求關(guān)于的函數(shù)關(guān)系式;

3)試確定點(diǎn)的位置,使直路的長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,為線段的中點(diǎn).

1)若為線段上的動點(diǎn),證明:平面平面;

2)若為線段,上的動點(diǎn)(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目,兩隊(duì)各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊(duì)第六位選手的成績沒有給出,并且告知大家隊(duì)的平均分比隊(duì)的平均分多4分,同時(shí)規(guī)定如果某位選手的成績不少于21分,則獲得晉級”.

1)主持人從隊(duì)所有選手成績中隨機(jī)抽取2個,求至少有一個為晉級的概率;

2)主持人從兩隊(duì)所有選手成績中分別隨機(jī)抽取2個,記抽取到晉級選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過點(diǎn),它的一個焦點(diǎn)與拋物線的焦點(diǎn)重合.

1)求橢圓的方程;

2)斜率為的直線過點(diǎn),且與拋物線交于兩點(diǎn),設(shè)點(diǎn),的面積為,求的值;

3)若直線過點(diǎn),且與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線的縱截距為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M是具有下列性質(zhì)的函數(shù)的全體:存在實(shí)數(shù)對,使得對定義域內(nèi)任意實(shí)數(shù)x都成立.

1)判斷函數(shù),是否屬于集合;

2)若函數(shù)具有反函數(shù),是否存在相同的實(shí)數(shù)對,使得同時(shí)屬于集合若存在,求出相應(yīng)的;若不存在,說明理由;

3)若定義域?yàn)?/span>的函數(shù)屬于集合,且存在滿足有序?qū)崝?shù)對;當(dāng)時(shí),的值域?yàn)?/span>,求當(dāng)時(shí)函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)處取得極值,對 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)對其定義域內(nèi)的任意,當(dāng)時(shí)總有,則稱為緊密函數(shù),例如函數(shù)是緊密函數(shù),下列命題:

緊密函數(shù)必是單調(diào)函數(shù);函數(shù)時(shí)是緊密函數(shù);

函數(shù)是緊密函數(shù);

若函數(shù)為定義域內(nèi)的緊密函數(shù),,則;

若函數(shù)是緊密函數(shù)且在定義域內(nèi)存在導(dǎo)數(shù),則其導(dǎo)函數(shù)在定義域內(nèi)的值一定不為零.

其中的真命題是______

查看答案和解析>>

同步練習(xí)冊答案