【題目】已知極點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為,直線l的參數(shù)方程為為參數(shù)

,直線lx軸的交點(diǎn)為MN是圓C上一動(dòng)點(diǎn),求的最小值;

若直線l被圓C截得的弦長(zhǎng)等于圓C的半徑,求a的值.

【答案】(1);(2)。

【解析】

(1)求出圓C的圓心和半徑,M點(diǎn)坐標(biāo),則|MN|的最小值為|MC|-r;(2)由垂徑定理可知圓心到直線l的距離為半徑的倍,列出方程解出.

(1)當(dāng)時(shí),圓的極坐標(biāo)方程為,可化為

化為直角坐標(biāo)方程為,即.

直線的普通方程為,與軸的交點(diǎn)的坐標(biāo)為

因?yàn)閳A心與點(diǎn)的距離為,

所以的最小值為.

(2)由可得

所以圓的普通方程為

因?yàn)橹本被圓截得的弦長(zhǎng)等于圓的半徑,

所以由垂徑定理及勾股定理得:圓心到直線的距離為圓半徑的倍,

所以.

解得,又,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分12分,1小問(wèn)7分,2小問(wèn)5分

設(shè)函數(shù)

1處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)等比數(shù)列的前n項(xiàng)和,滿足,則的最小值為

A. B. 3 C. 4 D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】天氣預(yù)報(bào),在元旦期間甲、乙兩地都降雨的概率為,至少有一個(gè)地方降雨的概率為,已知甲地降雨的概率大于乙地降雨的概率,且在這段時(shí)間甲、乙兩地降雨互不影響.

1)分別求甲、乙兩地降雨的概率;

2)在甲、乙兩地3天假期中,僅有一地降雨的天數(shù)為,求的分布列和數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

求函數(shù)的單調(diào)區(qū)間和極值.

若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是由)個(gè)不同的正整數(shù)組成的集合,其中每個(gè)元素的質(zhì)因子不大于100,且中不存在四個(gè)不同的元素,使得這四個(gè)數(shù)之積是一個(gè)4次方數(shù),的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,過(guò)點(diǎn)的直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)若點(diǎn)的直角坐標(biāo)為,求直線及曲線的直角坐標(biāo)方程;

(2)若點(diǎn)在圓上,直線交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案