【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若不過原點(diǎn)的直線與橢圓相交于,兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.

【答案】(1);(2).

【解析】

(1)根據(jù)離心率為,點(diǎn)在橢圓上,結(jié)合性質(zhì) ,列出關(guān)于 、的方程組,求出 、,即可得結(jié)果;(2)先判斷直線的斜率存在,設(shè)直線的方程為,與聯(lián)立消,得,由在直線上求得,利用弦長(zhǎng)公式、點(diǎn)到直線距離公式,結(jié)合三角形面積公式求得,利用基本不等式可得結(jié)果.

(1)由橢圓的離心率為,點(diǎn)在橢圓上,得,解得,所以橢圓的方程為.

(2)易得直線的方程為.

當(dāng)直線的斜率不存在時(shí),的中點(diǎn)不在直線上,故直線的斜率存在.

設(shè)直線的方程為,與聯(lián)立消,得,所以.

設(shè),,

,.由,

所以的中點(diǎn),

因?yàn)?/span>在直線上,所以,解得,

所以,得,且

,

又原點(diǎn)到直線的距離,所以 ,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,符合,且,所以面積的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列幾個(gè)命題,是真命題有(

A.,則

B.若復(fù)數(shù),滿足,則

C.給定兩個(gè)命題,.的必要而不充分條件,則的充分不必要條件

D.命題,,,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖1直角三角形ACB中,,,,點(diǎn)的中點(diǎn),,將沿折起,使面,如圖2.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若不過原點(diǎn)的直線與橢圓相交于兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從8名教師中選派4名同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1名教師),其中甲和乙不能都去,甲和丙只能都去或都不去,則不同的選派方案有( )

A.900種B.600種C.300種D.150種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知正方體的棱長(zhǎng)為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為

(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個(gè)紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十八大將生態(tài)文明建設(shè)納入中國(guó)特色社會(huì)主義事業(yè)“五位一體”總體布局,“美麗中國(guó)”成為中華民族追求的新目標(biāo).十九大報(bào)告中多次出現(xiàn)的“綠色”“低碳”“節(jié)約”等詞語,正在走入百姓生活,城市出行的新變革正在悄然發(fā)生,綠色出行的理念已深入人心,建設(shè)美麗中國(guó),綠色出行至關(guān)重要,騎自行車或步行漸漸成為市民的一種出行習(xí)慣.某市環(huán)保機(jī)構(gòu)隨機(jī)抽查統(tǒng)計(jì)了該市部分成年市民某月騎車次數(shù),統(tǒng)計(jì)如下:

次數(shù)

年齡

18歲至31歲

8

12

20

60

140

150

32歲至44歲

12

28

20

140

60

150

45歲至59歲

25

50

80

100

225

450

60歲及以上

25

10

10

19

4

2

聯(lián)合國(guó)世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老人.

(1)若從被抽查的該月騎車次數(shù)在的老年人中隨機(jī)選出兩名幸運(yùn)者給予獎(jiǎng)勵(lì),求其中一名幸運(yùn)者該月騎車次數(shù)在之間,另一名幸運(yùn)者該月騎車次數(shù)在之間的概率;

(2)用樣本估計(jì)總體的思想,解決如下問題:

①估計(jì)該市在32歲至44歲年齡段的一個(gè)青年人每月騎車的平均次數(shù);

②若月騎車次數(shù)不少于30次者稱為“騎行愛好者”,根據(jù)這些數(shù)據(jù),統(tǒng)計(jì)并完成下表,說明能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“騎行愛好者”與“青年人”有關(guān)?

青年人

非青年人

合計(jì)

騎行愛好者

非騎行愛好者

合計(jì)

0.10

0.05

0.025

0.10

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

參數(shù)數(shù)據(jù):

(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為,直線l的參數(shù)方程為為參數(shù)

,直線lx軸的交點(diǎn)為M,N是圓C上一動(dòng)點(diǎn),求的最小值;

若直線l被圓C截得的弦長(zhǎng)等于圓C的半徑,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案