在極坐標(biāo)系中,如果一個(gè)圓的方程p=4cosθ+6sinθ,那么過(guò)圓心且與極軸平行的直線方程是


  1. A.
    psinθ=3
  2. B.
    psinθ=-3
  3. C.
    pcosθ=2
  4. D.
    pcosθ=-2
A
分析:先在極坐標(biāo)方程p=4cosθ+6sinθ的兩邊同乘以ρ,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得直角坐標(biāo)系,再利用直角坐標(biāo)方程求解即可.
解答:將方程p=4cosθ+6sinθ兩邊都乘以p得:p2=4ρcosθ+6ρsinθ,
化成直角坐標(biāo)方程為
x2+y2-4x-6y=0.圓心的坐標(biāo)為(2,3).
過(guò)圓心且與極軸平行的直線方程是:
y=3,其極坐標(biāo)方程為:psinθ=3.
故選A.
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫(huà)點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(注意:請(qǐng)?jiān)谙铝卸}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A、(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,若過(guò)點(diǎn)A(3,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
2
3
2
3

B、若不等式|2a-1|≤|x+
1
x
|
對(duì)一切非零實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
[-
1
2
,
3
2
]
[-
1
2
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(請(qǐng)?jiān)谙铝袃深}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(坐標(biāo)系與參數(shù)方程選做題) 在極坐標(biāo)系中,P,Q是曲線C:ρ=4sinθ上任意兩點(diǎn),則線段PQ長(zhǎng)度的最大值為
4
4

(2)如圖,圓O是△ABC的外接圓,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
7
,AB=BC=3,則AC的長(zhǎng)為
3
7
2
3
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
(A)(幾何證明選做題)已知PA是圓D的切線,切點(diǎn)為A,PA=2,AC是圓D的直徑,PC與圓D交于點(diǎn)B,PB=1,則圓O的半徑r=
3
3

(B)(極坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,曲線p=4cos(θ-
π
3
)上任意兩點(diǎn)間的距離的最大值為
4
4

(C)(不等式選做題)若不等式|x-2|+|x+1|≥α對(duì)于任意x∈R恒成立,則實(shí)數(shù)a的取值范圍為
{α|α≤3}
{α|α≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•陜西一模)(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分.)
A.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,兩點(diǎn)A(3,
π
3
)
,B(4,
3
)
間的距離是
13
13

B.(不等式選講選做題)若不等式|x+1|+|x-2|>5的解集為
(-∞,-2)∪(3,+∞)
(-∞,-2)∪(3,+∞)

C.(幾何證明選講選做題)如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且BC=6,∠BAC=120°,則圓O的面積等于
12π
12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•深圳一模)請(qǐng)從下面兩題中選做一題,如果兩題都做,以第一題的得分為最后得分.
(1)在極坐標(biāo)系中,過(guò)圓ρ=4cosθ的圓心,且垂直于極軸的直線方程為
ρcosθ=2
ρcosθ=2

(2)如圖,AB為⊙O的直徑,弦AC、BD交于點(diǎn)P,若AB=3,CD=1,則sin∠APD=
2
2
3
2
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案