已知,為圓的直徑,為垂直的一條弦,垂足為,弦.
(1)求證:、、四點(diǎn)共圓;
(2)若,求線段的長.

(1)詳見解析;(2).

解析試題分析:(1)證明,利用四邊形對(duì)角互補(bǔ)證明、、、四點(diǎn)共圓;
(2)利用(1)中的結(jié)論結(jié)合割線定理得到,然后在中利用射影定理得到從而計(jì)算出的值.
(1)如圖,連結(jié),由為圓的直徑可知,

,所以,
因此、、、四點(diǎn)共圓;
(2)連結(jié),由、、四點(diǎn)共圓得,
,,所以,
因?yàn)樵?img src="http://thumb.zyjl.cn/pic5/tikupic/fb/1/1e8834.png" style="vertical-align:middle;" />中,所以.
考點(diǎn):1.四點(diǎn)共圓;2.割線定理;3.射影定理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知C點(diǎn)在圓O直徑BE的延長線上,CA切圓O于A點(diǎn),DC是∠ACB的平分線交AE于點(diǎn)F,交AB于D點(diǎn).

(1)求∠ADF的度數(shù);
(2)AB=AC,求AC∶BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點(diǎn)E,AB=2AC
(1)求證:BE=2AD;
(2)當(dāng)AC=3,EC=6時(shí),求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓O的內(nèi)接△ABC中,D為BC上一點(diǎn),且△ADC為正三角形,點(diǎn)E為BC的延長線上一
點(diǎn),AE為圓O的切線,求證:CD2=BD·EC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是圓O的直徑,弦BD、CA的延長線相交于點(diǎn)E,EF垂直BA的延長線于點(diǎn)F.求證:∠DEA=∠DFA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在梯形ABCD中,AD∥BC,AC⊥BD,垂足為E,∠ABC=45°,過E作AD的垂線交AD于F,交BC于G,過E作AD的平行線交AB于H.求證:FG2=AF·DF+BG·CG+AH·BH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△ABC中的兩條角平分線AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.

(1)證明:B,D,H,E四點(diǎn)共圓;
(2)證明:CE平分∠DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

(幾何證明選講選做題)在梯形中,,,點(diǎn)、分別在、上,且,若,則的長為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在矩形ABCD中,AB>·AD,E為AD的中點(diǎn),連結(jié)EC,作EF⊥EC,且EF交AB于F,連結(jié)FC.設(shè)=k,是否存在實(shí)數(shù)k,使△AEF、△ECF、△DCE與△BCF都相似?若存在,給出證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案