設(shè)0<θ<,曲線x2sinθ+y2cosθ=1和x2cosθ-y2sinθ=1 有4個(gè)不同的交點(diǎn),
(Ⅰ)求θ的取值范圍;
(Ⅱ)證明這4個(gè)交點(diǎn)共圓,并求圓半徑的取值范圍。
解:(Ⅰ)兩曲線的交點(diǎn)坐標(biāo)(x,y)滿足方程組,
,有4個(gè)不同交點(diǎn)等價(jià)于
,
又因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20111202/20111202095337828996.gif">,所以得θ的取值范圍為。
(Ⅱ)由(Ⅰ)的推理知4個(gè)交點(diǎn)的坐標(biāo)(x,y)滿足方程
即得4個(gè)交點(diǎn)共圓,該圓的圓心在原點(diǎn),半徑為,
因?yàn)閏osθ在上是減函數(shù),
所以由,知r的取值范圍是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),曲線x2+y2+2x-6y+1=0上有兩點(diǎn)P、Q,滿足關(guān)于直線x+my+4=0對稱,又滿足
OP
OQ
=0.
(1)求m的值;
(2)求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),曲線x2+y2+2x-6y+1=0上有兩點(diǎn)P、Q,滿足關(guān)于直線x+my+4=0對稱,又滿足·=0.

(1)求m的值;

(2)求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),曲線x2+y2+2x-6y+1=0上有兩點(diǎn)P、Q,滿足關(guān)于直線x+my+4=0對稱,又滿足·=0.

(1)求m的值;

(2)求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆湖北省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

((本小題滿分13分)設(shè)O為坐標(biāo)原點(diǎn),曲線x2y2+2x-6y+1=0上有兩點(diǎn)PQ關(guān)于直線xmy+4=0對稱,又滿足OP⊥OQ.

(1)求m的值;

(2)求直線PQ的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省高考數(shù)學(xué)一輪復(fù)習(xí):8.6 圓的方程(解析版) 題型:解答題

設(shè)O為坐標(biāo)原點(diǎn),曲線x2+y2+2x-6y+1=0上有兩點(diǎn)P、Q,滿足關(guān)于直線x+my+4=0對稱,又滿足=0.
(1)求m的值;
(2)求直線PQ的方程.

查看答案和解析>>

同步練習(xí)冊答案