如圖,在正方體ABCD-A1B1C1D1中,E為棱CC1的中點(diǎn).
(1)求證:A1B1∥平面ABE;
(2)若正方體的棱長(zhǎng)為1,求三棱錐B1-ABE的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)在正方體ABCD-A1B1C1D1中,由A1B1∥AB,能證明A1B1∥平面ABE.
(2)由VB1-ABE=VA-BEB1,利用等積法能求出三棱錐B1-ABE的體積.
解答: (1)證明:在正方體ABCD-A1B1C1D1中,
∵A1B1∥AB,AB?平面ABE,A1B1不包含于平面ABE,
∴A1B1∥平面ABE.
(2)解:∵正方體的棱長(zhǎng)為1,
∴三棱錐B1-ABE的體積:
VB1-ABE=VA-BEB1
=
1
3
S△BEB1•AB
=
1
3
(1-S△BCE-S△BEC1)×1
=
1
3
(1-
1
2
×
1
2
×1-
1
2
×
1
2
×1)

=
1
6
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查三棱錐的體積的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x>0時(shí),有f(x)=2x,且當(dāng)x∈[-3,1],f(x)的值域是[n,m],則m-n的值是( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊上一點(diǎn)P(4a,-6a)(a≠0),求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+1+2(a>0,a≠1)的圖象經(jīng)過點(diǎn)(1,11),
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=[f(x)]2-f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)幾何體的三視圖(單位:cm),求這個(gè)幾何體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
(1)
sin(
π
2
+α)•cos(
π
2
-α)
cos(π+α)
+
sin(π-α)•cos(
π
2
+α)
sin(π+α)

(2)log3
427
3
)+lg25+lg4+7 log72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
x2+bx+c,且f(x)在x=1處取得極值.
(1)求b值;
(2)若當(dāng)x∈[-1,
9
4
],f(x)<c2-
7
6
恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩定點(diǎn)A(-5,0),B(5,0),C為動(dòng)點(diǎn)
(1)若C在x軸上方,且△ABC是等腰直角三角形,求C點(diǎn)坐標(biāo);
(2)若直線CA,CB的斜率乘積為-
16
25
,求C點(diǎn)坐標(biāo)(x,y)滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x(ex-1)+ax2
(Ⅰ)當(dāng)a=-
1
2
時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)x≥0時(shí),f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案