已知函數(shù)f(x)=
1
3
x3-
3
2
x2+bx+c,且f(x)在x=1處取得極值.
(1)求b值;
(2)若當(dāng)x∈[-1,
9
4
],f(x)<c2-
7
6
恒成立,求c的取值范圍.
考點:利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)先對函數(shù)進(jìn)行求導(dǎo),然后根據(jù)f'(1)=0求出b的值;
(2)先求函數(shù)在區(qū)間上的最小值,再轉(zhuǎn)化為解不等式即可.
解答: 解:(1)因為f(x)=
1
3
x3-
3
2
x2+bx+c,
所以f′(x)=x2-3x+b.…(2分)
因為f(x)在x=1處取得極值,所以f′(1)=1-3+b=0.解得b=2.…(4分)
(2)因為f(x)=
1
3
x3-
3
2
x2+2x+c,.所以f′(x)=x2-3x+2=(x-1)(x-2),
當(dāng)x變化時,f′(x),f(x)的變化情況如下表:
x-1(-1,1)1(1,2)2(2,
9
4
9
4
f′(x)+0-0+
f(x)-
23
6
+c
單調(diào)遞增
5
6
+c
單調(diào)遞減
2
3
+c
單調(diào)遞增
45
64
+c
因此當(dāng)x=1時,f(x)有極大值
5
6
+c.…(6分)
又f(
9
4
)=
45
64
+c<
5
6
+c,f(-1)=-
23
6
+c<
5
6
+c,
∴x∈[-1,
9
4
]時,f(x)最大值為f(1)=
5
6
+c.…(7分)
c2-
7
6
5
6
+c
.∴c<-1或c>2.…(8分)
點評:本題主要考查函數(shù)的極值與其導(dǎo)函數(shù)之間的關(guān)系以及函數(shù)在閉區(qū)間上最值的求法.導(dǎo)數(shù)是高考的熱點問題,每年必考要給予充分的重視.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2+x+1(x∈R)的遞減區(qū)間是(  )
A、[
1
2
,+∞)
B、[-1,+∞)
C、(-∞,-
1
2
]
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-
2
3x+1

(1)判斷并證明f(x)的奇偶性;
(2)證明:函數(shù)f(x)在其定義域上是增函數(shù);
(3)函數(shù)g(x)=x3•f(x),求證:g(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為棱CC1的中點.
(1)求證:A1B1∥平面ABE;
(2)若正方體的棱長為1,求三棱錐B1-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,{bn}是各項均為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=19,a5+b3=9.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=anbn+
1
anan+1
,Sn為數(shù)列{cn}的前n項和,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右兩個焦點,橢圓上的點A(1,
3
2
)到F1,F(xiàn)2兩點的距離之和等于4,求:
①寫出橢圓C的方程和焦點的坐標(biāo);
②過F1且傾斜角為30°的直線交橢圓于A,B兩點,求△ABF2的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={5,log2(a+3)},B={a,b},若A∩B={2},求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a(x2-x-1)
ex
(x∈R),a為正數(shù).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對任意x1,x2∈[0,4]均有|f(x1)-f(x2)|<1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-1n(1+x2)(a>0).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:當(dāng)x>0時,1n(1+x2)<x;
(Ⅲ)證明:(1+
1
24
)(1+
1
34
)…(1+
1
n4
)<e(n∈N*,n≥2,其中無理數(shù)e=2.71828…)

查看答案和解析>>

同步練習(xí)冊答案