【題目】在一個(gè)文藝比賽中,12名專業(yè)人士和12名觀眾代表各組成一個(gè)評(píng)委小組,給參賽選手打分,下面是兩組評(píng)委對(duì)同一名選手的打分:

小組A 42 45 48 46 52 47 49 55 42 51 47 45

小組B 55 36 70 66 75 49 46 68 42 62 58 47

1)選擇一個(gè)可以度量每一組評(píng)委打分相似性的量,并對(duì)每組評(píng)委的打分計(jì)算度量值.

2)你能據(jù)此判斷小組A和小組B中哪一個(gè)更像是由專業(yè)人土組成的嗎?

【答案】1)可以用樣本方差作為度量每一組評(píng)委打分相似性的量,A組的樣本方差B組的樣本方差為;(2A組更像是由專業(yè)人士組成的.

【解析】

1)根據(jù)題意,比較兩組評(píng)委的量,選擇方差作為相似性的量,并計(jì)算度量值.

2)比較兩組評(píng)委的方差大小,即可判斷哪組為專業(yè)組.

1)可以用樣本標(biāo)準(zhǔn)差作為度量每一組評(píng)委打分相似性的量,樣本標(biāo)準(zhǔn)差越小,相似程度越高.

所以A組的樣本方差

同理

B組的樣本方差為

2)由于專業(yè)人士給分更符合專業(yè)規(guī)則,相似程度更高

由(1)可知,

因而

根據(jù)方差越大,數(shù)據(jù)波動(dòng)越大,因此A組更像是由專業(yè)人士組成的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量(件)與銷售單價(jià)(元)可近似看成一次函數(shù)(如圖).

1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;

2)設(shè)公司獲得的利潤(rùn)(利潤(rùn)=銷售總價(jià)-成本總價(jià))為元。試用銷售單價(jià)表示利潤(rùn),并求銷售單價(jià)定為多少時(shí),該公司可獲得最大利潤(rùn),最大利潤(rùn)是多少?此時(shí)的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)設(shè)關(guān)于的方程的兩個(gè)不等實(shí)根,求證:(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)寫出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)上,點(diǎn)上,且,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,橢圓 的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上且軸,直線軸于點(diǎn), , 為橢圓的上頂點(diǎn), 的面積為1.

(1)求橢圓的方程;

(2)過(guò)的直線交橢圓 ,且滿足,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地需要修建一條大型輸油管道通過(guò)120公里寬的沙漠地帶,該段輸油管道兩端的輸油站已建好,余下工程只需要在該段兩端已建好的輸油站之間鋪設(shè)輸油管道和等距離修建增壓站(又稱泵站)。經(jīng)預(yù)算,修建一個(gè)增壓站的工程費(fèi)用為400萬(wàn)元,鋪設(shè)距離為公里的相鄰兩增壓站之間的輸油管道費(fèi)用為萬(wàn)元。設(shè)余下工程的總費(fèi)用為萬(wàn)元。

(I)試將表示成關(guān)于的函數(shù);

(II)需要修建多少個(gè)増壓站才能使總費(fèi)用最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)構(gòu)為研究學(xué)生玩電腦游戲和對(duì)待作業(yè)量態(tài)度的關(guān)系,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,所得數(shù)據(jù)如下表所示:

認(rèn)為作業(yè)多

認(rèn)為作業(yè)不多

總計(jì)

喜歡玩電腦游戲

25

15

40

不喜歡玩電腦游戲

25

35

60

總計(jì)

50

50

100

(參考公式,可能用到數(shù)據(jù):,),參照以上公式和數(shù)據(jù),得到的正確結(jié)論是( )

A. 的把握認(rèn)為喜歡玩電腦游戲與對(duì)待作業(yè)量的態(tài)度有關(guān)

B. 的把握認(rèn)為喜歡玩電腦游戲與對(duì)待作業(yè)量的態(tài)度無(wú)關(guān)

C. 的把握認(rèn)為喜歡玩電腦游戲與對(duì)待作業(yè)量的態(tài)度有關(guān)

D. 的把握認(rèn)為喜歡玩電腦游戲與對(duì)待作業(yè)量的態(tài)度無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐中,平面平面,平面平面上任意一點(diǎn),為菱形對(duì)角線的交點(diǎn)。

(1)證明:平面平面;

(2)若,當(dāng)四棱錐的體積被平面分成3:1兩部分時(shí),若二面角的大小為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)為了更好提升學(xué)校文化品位,發(fā)揮校園文化的教育功能特舉辦了校園文化建設(shè)方案征集大賽,經(jīng)評(píng)委會(huì)初評(píng),有兩個(gè)優(yōu)秀方案入選.為了更好充分體現(xiàn)師生的主人翁意識(shí),組委會(huì)邀請(qǐng)了100名師生代表對(duì)這兩個(gè)方案進(jìn)行登記評(píng)價(jià)(登記從高到低依次為),評(píng)價(jià)結(jié)果對(duì)應(yīng)的人數(shù)統(tǒng)計(jì)如下表:

編號(hào)

等級(jí)

1號(hào)方案

8

41

26

15

10

2號(hào)方案

7

33

20

20

20

(Ⅰ)若從對(duì)1號(hào)方案評(píng)價(jià)為的師生中任選3人,求這3人中至少有1人對(duì)1號(hào)方案評(píng)價(jià)為的概率;

(Ⅱ)級(jí)以上(含級(jí)),可獲得2萬(wàn)元的獎(jiǎng)勵(lì),級(jí)獎(jiǎng)勵(lì)萬(wàn)元,級(jí)無(wú)獎(jiǎng)勵(lì).若以此表格數(shù)據(jù)估計(jì)概率,隨機(jī)請(qǐng)1名師生分別對(duì)兩個(gè)方案進(jìn)行獨(dú)立評(píng)價(jià),求兩個(gè)方案獲得的獎(jiǎng)勵(lì)總金額(單位:萬(wàn)元)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案