已知函數(shù)f(x)=-x2+ax-b.若a、b都是從區(qū)間[0,4]內(nèi)任取的一個數(shù),則f(1)>0成立的概率是( 。
A、
9
16
B、
9
32
C、
7
16
D、
23
32
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:本題利用幾何概型求解即可.在a-O-b坐標系中,畫出f(1)>0對應(yīng) 的區(qū)域,和a、b都是在區(qū)間[0,4]內(nèi)表示的區(qū)域,計算它們的比值即得.
解答: 解:f(1)=-1+a-b>0,即a-b>1,
如圖,A(1,0),B(4,0),C(4,3),
S△ABC=
9
2

∴P=
9
2
4×4
=
9
32

故選:B.
點評:本題主要考查幾何概型.如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型. 古典概型與幾何概型的主要區(qū)別在于:幾何概型是另一類等可能概型,它與古典概型的區(qū)別在于試驗的結(jié)果不是有限個.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x+y)=f(x)+f(y),則f(0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2ωx+2sinωx•cosωx+3cos2ωx的定義域為[0,
π
2
],
(1)當ω=1時,求函數(shù)f(x)的最小值;
(2)若ω>0,定義域為[0,
π
2
]的函數(shù)f(x)的最大值為M,如果關(guān)于x的方程f(x)=M在區(qū)間[0,
π
2
]有且僅有一個解,求ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在邊長為1正方體ABCD-A1B1C1D1中,以正方體的三條棱所在直線為軸建立空間直角坐標系Oxyz,
(I)若點P在線段BD1上,且滿足3|BP|=|BD1|,試寫出點P的坐標并寫出P關(guān)于縱坐標軸y軸的對稱點P′的坐標;
(Ⅱ)在線段C1D上找一點M,使得點M到點P的距離最小,求出點M的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=k(x2-x+1)-x4(1-x)4,如果對任何x∈[0,1],都有f(x)≥0,則k的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y滿足(x-1)2+y2=1,則S=x2+y2+2x-2y+2的最小值是( 。
A、6-2
5
B、
5
-1
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象在y軸上的截距為1,對于任意的x∈R,都有f(x+1)=f(x)+2x-2恒成立.
(I)求y=f(x)的解析式;
(Ⅱ)設(shè)集合A={f(x)|n<x≤n+1,f(x)∈Z,n∈N*},記A中的元素個數(shù)為an.試求a1,a2和數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1
x=2cosθ
y=
3
sinθ
(θ為參數(shù)),直線C2
x=1-2t
y=2t
(t為參數(shù))
(1)將曲線C1與C2的參數(shù)方程化為普通方程.
(2)若曲線C1與C2交于A,B兩點,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:
日期1日2日3日4日5日
溫差x(℃)101113128
發(fā)芽y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,剩下的2組數(shù)據(jù)用于回歸方程檢驗,
(1)若選取的是12月1日和12月5日這兩日的數(shù)據(jù)進行檢驗,請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
y
=
b
x+
a

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(3)請預(yù)測溫差為14℃的發(fā)芽數(shù)?

查看答案和解析>>

同步練習(xí)冊答案