在長方體中,,過、、三點的平面截去長方體的一個角后,得到如圖所示的幾何體,且這個幾何體的體積為.
(1)求棱的長;
(2)若的中點為,求異面直線與所成角的大小(結(jié)果用反三角函數(shù)值表示).
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知長方形ABCD中,AB=2,A1,B1分別是AD,BC邊上的點,且AA1=BB1="1," E,F(xiàn)分別為B1D與AB的中點. 把長方形ABCD沿直線折成直角二面角,且.
(1)求證:
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱中,平面,底面是邊長為1的正方形,側(cè)棱,
(Ⅰ)證明:;
(Ⅱ)若棱上存在一點,使得,
當(dāng)二面角的大小為時,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖是一個直三棱柱(以A1B1C1為底面)被一平面
所截得到的幾何體,截面為ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且設(shè)點O是AB的中點。
(1)證明:OC∥平面A1B1C1;
(2)求異面直線OC與AlBl所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個全等的等腰直角三角形,O為BD的中點,且AB=AD=CB=CD=2,AC=.
(1)當(dāng)時,求證:AO⊥平面BCD;
(2)當(dāng)二面角的大小為時,求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 證明:PA⊥BD;
(Ⅱ) 若PD=AD,求二面角A-PB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O為AB的中點.
(1)求證:OC⊥DF;
(2)求平面DEF與平面ABC相交所成銳二面角的大;
(3)求多面體ABC—FDE的體積V.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com