【題目】在直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.設(shè)點(diǎn)在圓外.
(1)求的取值范圍.
(2)設(shè)直線與圓相交于兩點(diǎn),若,求的值.
【答案】(1)(2)
【解析】
(1)首先將曲線化為直角坐標(biāo)方程,由點(diǎn)在圓外,則解得即可;
(2)將直線的參數(shù)方程代入圓的普通方程,設(shè)、對(duì)應(yīng)的參數(shù)分別為,列出韋達(dá)定理,由及在圓的上方,得,即即可解得;
解:(1)曲線的直角坐標(biāo)方程為.
由點(diǎn)在圓外,得點(diǎn)的坐標(biāo)為,結(jié)合,解得.
故的取值范圍是.
(2)由直線的參數(shù)方程,得直線過點(diǎn),傾斜角為,
將直線的參數(shù)方程代入,并整理得
,其中.
設(shè)、對(duì)應(yīng)的參數(shù)分別為,則,.
由及在圓的上方,得,即,代入①,得,,
消去,得,結(jié)合,解得.
故的值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月,北京世界園藝博覽會(huì)開幕,為了保障園藝博覽會(huì)安全順利地進(jìn)行,某部門將5個(gè)安保小組全部安排到指定的三個(gè)不同區(qū)域內(nèi)值勤,則每個(gè)區(qū)域至少有一個(gè)安保小組的排法有( )
A.150種B.240種C.300種D.360種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某綜藝節(jié)目為比較甲、乙兩名選手的各項(xiàng)能力(指標(biāo)值滿分為5分,分值高者為優(yōu)),繪制了如圖所示的六維能力雷達(dá)圖,圖中點(diǎn)A表示甲的創(chuàng)造力指標(biāo)值為4,點(diǎn)B表示乙的空間能力指標(biāo)值為3,則下面敘述正確的是
A. 乙的記憶能力優(yōu)于甲的記憶能力
B. 乙的創(chuàng)造力優(yōu)于觀察能力
C. 甲的六大能力整體水平優(yōu)于乙
D. 甲的六大能力中記憶能力最差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若對(duì)任意的,都有成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處有極值.
(1)求的解析式;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是邊長為2的菱形,是的中點(diǎn).
(1)證明:平面;
(2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著中美貿(mào)易戰(zhàn)的不斷升級(jí),越來越多的國內(nèi)科技巨頭加大了科技研發(fā)投入的力度.中華技術(shù)有限公司擬對(duì)“麒麟”手機(jī)芯片進(jìn)行科技升級(jí),根據(jù)市場調(diào)研與模擬,得到科技升級(jí)投入x(億元與科技升級(jí)直接收益y(億元)的數(shù)據(jù)統(tǒng)計(jì)如下:
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
x | 2 | 3 | 4 | 6 | 8 | 10 | 13 | 21 | 22 | 23 | 24 | 25 |
y | 13 | 22 | 31 | 42 | 50 | 56 | 58 | 68.5 | 68 | 67.5 | 66 | 66 |
當(dāng)時(shí),建立了y與x的兩個(gè)回歸模型:模型①:;模型②:;當(dāng)時(shí),確定y與x滿足的線性回歸方程為.
(1)根據(jù)下列表格中的數(shù)據(jù),比較當(dāng)時(shí)模型①、②的相關(guān)指數(shù)的大小,并選擇擬合精度更高、更可靠的模型,預(yù)測對(duì)“麒麟”手機(jī)芯片科技升級(jí)的投入為17億元時(shí)的直接收益.
回歸模型 | 模型① | 模型② |
回歸方程 | ||
182.4 | 79.2 |
(附:刻畫回歸效果的相關(guān)指數(shù),)
(2)為鼓勵(lì)科技創(chuàng)新,當(dāng)科技升級(jí)的投入不少于20億元時(shí),國家給予公司補(bǔ)貼5億元,以回歸方程為預(yù)測依據(jù),比較科技升級(jí)投入17億元與20億元時(shí)公司實(shí)際收益的大。
(附:用最小二乘法求線性回歸方程的系數(shù):,)
(3)科技升級(jí)后,“麒麟”芯片的效率X大幅提高,經(jīng)實(shí)際試驗(yàn)得X大致服從正態(tài)分布.公司對(duì)科技升級(jí)團(tuán)隊(duì)的獎(jiǎng)勵(lì)方案如下:若芯片的效率不超過50%,不予獎(jiǎng)勵(lì):若芯片的效率超過50%,但不超過53%,每部芯片獎(jiǎng)勵(lì)2元;若芯片的效率超過53%,每部芯片獎(jiǎng)勵(lì)4元記為每部芯片獲得的獎(jiǎng)勵(lì),求(精確到0.01).
(附:若隨機(jī)變量,則,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,其中為常數(shù).
(1)求的值;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自從高中生通過高校自主招生可獲得加分進(jìn)入高校的政策出臺(tái)后,自主招生越來越受到高中生家長的重視.某機(jī)構(gòu)為了調(diào)查城市和城市的高中家長對(duì)于自主招生的關(guān)注程度,在這兩個(gè)城市中抽取了名高中生家長進(jìn)行了調(diào)查,得到下表:
關(guān)注 | 不關(guān)注 | 合計(jì) | |
城高中家長 | 20 | 50 | |
城高中家長 | 20 | ||
合計(jì) | 100 |
(1)完成上面的列聯(lián)表;
(2)根據(jù)上面列聯(lián)表的數(shù)據(jù),是否有的把握認(rèn)為家長對(duì)自主招生關(guān)注與否與所處城市有關(guān);
(3)為了進(jìn)一步研究家長對(duì)自主招生的直法,該機(jī)構(gòu)從關(guān)注的學(xué)生家長里面,按照分層抽樣方法抽取了人,并再從這人里面抽取人進(jìn)行采訪,求所抽取的人恰好兩城市各一人的概率.
附:(其中).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com