分析 根據(jù)函數(shù)f(x)=$\left\{\begin{array}{l}{x-sinx,x≥0}\\{{e}^{x}-1,x<0}\end{array}\right.$,分類討論:當x≥0時,f(x)=x-sinx,利用導數(shù)研究函數(shù)的單調(diào)性,且f(0)=0;當x<0時,f(x)=ex-1在(-∞,0)上單調(diào)遞增,且f(x)<f(0)=0,可知函數(shù)f(x)的單調(diào)性,利用函數(shù)的單調(diào)性轉(zhuǎn)化不等式f(a)>f(2-a2)為2-a2<a,解此不等式即可求得結(jié)果.
解答 解:當x≥0時,f(x)=x-sinx,f′(x)=1-cosx≥0,
∴f(x)在(0,+∞)上單調(diào)遞增,且f(0)=0;
當x<0時,f(x)=ex-1在(-∞,0)上單調(diào)遞增,且f(x)<f(0)=0,
故f(x)在R上單調(diào)遞增,
∵f(a)>f(2-a2),∴2-a2<a,解得a<-2或a>1,
故答案為:a<-2或a>1.
點評 此題考查分段函數(shù)的單調(diào)性問題,有關分段函數(shù)問題的解決策略就是分段解決,體現(xiàn)了分類討論的思想,根據(jù)函數(shù)的解析式研究函數(shù)的單調(diào)性是解決此題的關鍵,利用函數(shù)的單調(diào)性把函數(shù)值不等式轉(zhuǎn)化為自變量不等式,體現(xiàn)了轉(zhuǎn)化的思想,同時考查了學生靈活應用知識分析解決問題的能力和計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | U=A∪B | B. | U=∁UA∪B | C. | U=A∪∁UB | D. | U=∁UA∪∁UB |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(α+$\frac{5π}{6}$)>f(α+$\frac{π}{12}$) | B. | f(α+$\frac{5π}{6}$)<f(α+$\frac{π}{12}$) | C. | f(α+$\frac{5π}{6}$)=f(α+$\frac{π}{12}$) | D. | 大小與α,φ有關 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com