【題目】對(duì)于函數(shù),若存在實(shí)數(shù)對(duì),使得等式對(duì)定義域中的任意都成立,則稱函數(shù)是“型函數(shù)”.
(1)若是“型函數(shù)”,且,求滿足條件的實(shí)數(shù)對(duì);
(2)已知函數(shù).函數(shù)是“型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì)為,當(dāng)時(shí),.若對(duì)任意時(shí),都存在,使得,求實(shí)數(shù)的值.
【答案】(1);(2)
【解析】
(1)解方程,,即得解;(2)等價(jià)于在上的值域是在上的值域的子集,等價(jià)于對(duì)任意,都有.再利用是“型函數(shù)”求解.
解:(1)因?yàn)?/span>是“型函數(shù)”,
所以存在實(shí)數(shù)對(duì)使得等式成立,即,
代入,可得,即,.
所以滿條件的實(shí)數(shù)對(duì)為.
(2)因?yàn)閷?duì)任意時(shí),都存在,使得,
所以在上的值域是在上的值域的子集.
因?yàn)?/span>,時(shí),,
則對(duì)任意,都有.
因?yàn)?/span>是“型函數(shù)”,且對(duì)應(yīng)的實(shí)數(shù)對(duì)為,所以.
當(dāng)時(shí),,則只需滿足對(duì)任意,
都有且成立.
即對(duì)任意,都有即可,
即不等式對(duì)任意恒成立且.
①時(shí),,時(shí)滿足條件;
②時(shí),,滿足條件;
③時(shí),該不等式等價(jià)于.
時(shí),即恒成立,;
時(shí),即恒成立,
因?yàn)?/span>在上單調(diào)遞增,所以.
綜上可得,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,部分對(duì)應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示。
X | -1 | 0 | 2 | 4 | 5 |
f(x) | 1 | 2 | 0 | 2 | 1 |
下列關(guān)于函數(shù)的命題:
①函數(shù)在是減函數(shù);
②如果當(dāng)時(shí),的最大值是2,那么t的最大值為4;③函數(shù)有4個(gè)零點(diǎn),則;
其中真命題的個(gè)數(shù)是( )
A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上的點(diǎn)到它的兩個(gè)焦的距離之和為,以橢圓的短軸為直徑的圓經(jīng)過這兩個(gè)焦點(diǎn),點(diǎn), 分別是橢圓的左、右頂點(diǎn).
()求圓和橢圓的方程.
()已知, 分別是橢圓和圓上的動(dòng)點(diǎn)(, 位于軸兩側(cè)),且直線與軸平行,直線, 分別與軸交于點(diǎn), .求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線.
(1)若直線與圓交于不同的兩點(diǎn),,當(dāng)時(shí),求的值;
(2)若,是直線上的動(dòng)點(diǎn),過作圓的兩條切線,切點(diǎn)為,探究:直線是否過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個(gè)數(shù),y表示這個(gè)x個(gè)分店的年收入之和.
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程
(2)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤最大?
(參考公式:,其中,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)的圖象, 只需將函數(shù)的圖象( )
A. 所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
B. 所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
C. 所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
D. 所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求該函數(shù)的最大值;
(2)是否存在實(shí)數(shù),使得該函數(shù)在閉區(qū)間上的最大值為?若存在,求出對(duì)應(yīng)的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,在三棱錐P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分別是AB,PB的中點(diǎn).
(Ⅰ)求證:DE∥平面PAC.
(Ⅱ)求證:AB⊥PB;
(Ⅲ)若PC=BC,求二面角P—AB—C的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com