分析 假設(shè)存在兩個(gè)銳角α和β,使得兩個(gè)條件:α+2β=$\frac{2π}{3}$①和tan$\frac{α}{2}$tanβ=2-$\sqrt{3}$②同時(shí)成立,求得$\left\{\begin{array}{l}{tan\frac{α}{2}=1}\\{tanβ=2-\sqrt{3}}\end{array}\right.$,或$\left\{\begin{array}{l}{tan\frac{α}{2}=2-\sqrt{3}}\\{tanβ=1}\end{array}\right.$,解得α=$\frac{π}{6}$、β=$\frac{π}{4}$ 滿足條件,從而得出結(jié)論.
解答 解:假設(shè)存在兩個(gè)銳角α和β,使得兩個(gè)條件:α+2β=$\frac{2π}{3}$①和tan$\frac{α}{2}$tanβ=2-$\sqrt{3}$②同時(shí)成立;
可得tan($\frac{α}{2}$+β)=tan$\frac{π}{3}$=$\sqrt{3}$,∴tan$\frac{α}{2}$+tanβ=tan($\frac{α}{2}$+β)•(1-tan$\frac{α}{2}$tanβ)=$\sqrt{3}$[1-(2-$\sqrt{3}$)]=3-$\sqrt{3}$,
即 tan$\frac{α}{2}$+tanβ=3-$\sqrt{3}$ ③.
由②③求得$\left\{\begin{array}{l}{tan\frac{α}{2}=1}\\{tanβ=2-\sqrt{3}}\end{array}\right.$,或$\left\{\begin{array}{l}{tan\frac{α}{2}=2-\sqrt{3}}\\{tanβ=1}\end{array}\right.$.
對(duì)于$\left\{\begin{array}{l}{tan\frac{α}{2}=1}\\{tanβ=2-\sqrt{3}}\end{array}\right.$,由于不存在銳角α,使tan$\frac{α}{2}$=1,故此方程組無(wú)解.
對(duì)于$\left\{\begin{array}{l}{tan\frac{α}{2}=2-\sqrt{3}}\\{tanβ=1}\end{array}\right.$,可得$\frac{α}{2}$=$\frac{π}{12}$,β=$\frac{π}{4}$,故存在α=$\frac{π}{6}$、β=$\frac{π}{4}$ 滿足條件.
點(diǎn)評(píng) 本題給出α、β滿足的條件,探求α、β能否為銳角.著重考查了兩角和與差的正切公式、方程組的解法、特殊角的三角函數(shù)值等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 36 | B. | 8 | C. | 60 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | C. | 等腰直角三角形 | D. | 等邊三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 36 | B. | 37 | C. | 38 | D. | 39 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com