【題目】已知各項(xiàng)都是正數(shù)的數(shù)列的前項(xiàng)和為,,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足:,,數(shù)列的前項(xiàng)和,求證:;
(3)若對任意恒成立,求的取值范圍.
【答案】(Ⅰ)(Ⅱ)詳見解析(Ⅲ)
【解析】
試題分析:(Ⅰ)由和項(xiàng)求數(shù)列通項(xiàng),注意分類討論:當(dāng),得,當(dāng)時(shí),,得數(shù)列遞推關(guān)系式,因式分解可得,根據(jù)等差數(shù)列定義得數(shù)列通項(xiàng)公式(Ⅱ)因?yàn)?/span>,所以利用疊加法求通項(xiàng)公式:,因此,從而利用裂項(xiàng)相消法求和得,即證得(Ⅲ)不等式恒成立問題,一般先變量分離,轉(zhuǎn)化為求對應(yīng)函數(shù)最值問題:由得,而有最大值,所以
試題解析:(1)時(shí),
是以為首項(xiàng),為公差的等差數(shù)列
…4分
(2)
, ,即…………………9分
(3)由得, 當(dāng)且僅當(dāng)時(shí),有最大值, ………………………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若對任意的,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)已知產(chǎn)量和能耗呈線性關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)耗能為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在各棱長為的直四棱柱中,底面為棱形, 為棱上一點(diǎn),且
(1)求證:平面平面;
(2)平面將四棱柱分成上、下兩部分,求這兩部分的體積之比.
(棱臺(tái)的體積公式為,其中分別為上、下底面面積, 為棱臺(tái)的高)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng),求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)滿足:
①對任意的, ,當(dāng)時(shí),有成立;
②對恒成立.求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,并且經(jīng)過.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右焦點(diǎn)作直線,直線與橢圓相交于兩點(diǎn),當(dāng)的面積最大時(shí),求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com