設(shè)函數(shù)f(x)=
2x-2    x∈[1,+∞)
x2-2x  x∈(-∞,1]
,則函數(shù)f(x)=
1
4
的零點(diǎn)是
 
分析:本題考查的知識(shí)點(diǎn)是分段函數(shù)及函數(shù)的零點(diǎn),由設(shè)函數(shù)f(x)=
2x-2     x∈[1 +∞)
x2-2x   x∈(-∞,1)
,函數(shù)f(x)-
1
4
的零點(diǎn)即為函數(shù)f(x)=
1
4
時(shí)的自變量x的值,分類討論后,即可得到結(jié)果.
解答:解:當(dāng)x≥1時(shí),
f(x)-
1
4
=0,
即2x-2-
1
4
=0,
∴x=
9
8

當(dāng)x<1時(shí),
f(x)-
1
4
=0,
即x2-2x-
1
4
=0,
x=
2-
5
2
(舍去大于1的根).
∴f(x)-
1
4
的零點(diǎn)為
9
8
2-
5
2

故答案為:
9
8
,
2-
5
2
點(diǎn)評(píng):分段函數(shù)分段處理,這是研究分段函數(shù)圖象和性質(zhì)最核心的理念,具體做法是:分段函數(shù)的定義域、值域是各段上x、y取值范圍的并集,分段函數(shù)的奇偶性、單調(diào)性要在各段上分別論證;分段函數(shù)的最大值,是各段上最大值中的最大者.故本題中由函數(shù)值求自變量的值,也要分段討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、設(shè)函數(shù)f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定實(shí)數(shù)a(a≠
12
),設(shè)函數(shù)f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導(dǎo)數(shù)f′(x)的圖象為C1,C1關(guān)于直線y=x對(duì)稱的圖象記為C2
(Ⅰ)求函數(shù)y=f′(x)的單調(diào)區(qū)間;
(Ⅱ)對(duì)于所有整數(shù)a(a≠-2),C1與C2是否存在縱坐標(biāo)和橫坐標(biāo)都是整數(shù)的公共點(diǎn)?若存在,請求出公共點(diǎn)的坐標(biāo);若不若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(2x+1)(3x+a)
x
為奇函數(shù),則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x+x-4,則方程f(x)=0一定存在根的區(qū)間為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
-2x+m2x+n
(m、n為常數(shù),且m∈R+,n∈R).
(Ⅰ)當(dāng)m=2,n=2時(shí),證明函數(shù)f(x)不是奇函數(shù);
(Ⅱ)若f(x)是奇函數(shù),求出m、n的值,并判斷此時(shí)函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案