已知函數(shù),
(1) 當(dāng)時,求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間.
(1)
(2)①的單調(diào)遞減區(qū)間為,,
②當(dāng)的單調(diào)遞減區(qū)間為,,單調(diào)遞增區(qū)間為,
③當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
解析試題分析:(1)解:當(dāng)時,,,
所以在處的切線方程為,
(II)解: ,當(dāng)時,
又函數(shù)的定義域為, 所以的單調(diào)遞減區(qū)間為,,
當(dāng) 時,的單調(diào)遞減區(qū)間為,,單調(diào)遞增區(qū)間為,
當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
點(diǎn)評:本題以三次函數(shù)為載體,主要考查函數(shù)單調(diào)性的應(yīng)用、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、不等式的解法等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)試判斷函數(shù)的單調(diào)性,并說明理由;
(Ⅱ)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()是定義在上的奇函數(shù),且時,函數(shù)取極值1.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)令,若(),不等式恒成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I) 解關(guān)于的不等式
(II)若函數(shù)的圖象恒在函數(shù)的上方,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()是偶函數(shù)
(1)求的值;
(2)設(shè),若函數(shù)與的圖像有且只有一個公共點(diǎn),求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1)若,解不等式;
(2)若不等式對一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(3)若,解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時,不等式f(x)>m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com