(本小題滿分15分)

如圖所示,一科學(xué)考察船從港口出發(fā),沿北偏東角的射線方向航行,而在離港口為正常數(shù))海里的北偏東角的A處有一個供給科考船物資的小島,其中.現(xiàn)指揮部需要緊急征調(diào)沿海岸線港口正東m)海里的B處的補給船,速往小島A裝運物資供給科考船,該船沿BA方向全速追趕科考船,并在C處相遇.經(jīng)測算當(dāng)兩船運行的航向與海岸線OB圍成的三角形OBC的面積最小時,這種補給最適宜.

⑴ 求S關(guān)于m的函數(shù)關(guān)系式;

⑵ 應(yīng)征調(diào)m為何值處的船只,補給最適宜.

 

 

 

 

 

 

【答案】

⑴以O為原點,OB所在直線為x軸,建立平面直角坐標(biāo)系,則直線OZ方程為.                                              …………………………2分

設(shè)點, 則,,

,又,所以直線AB的方程為

上面的方程與聯(lián)立得點          ………………………5分

                  …………………………8分

  ……………12分

當(dāng)且僅當(dāng)時,即時取等號,     ………………………14分

答:S關(guān)于m的函數(shù)關(guān)系式

⑵ 應(yīng)征調(diào)為何值處的船只,補給最適宜.    …………………………15分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(。┤舨坏仁對任意的恒成立,求實數(shù)的取值范圍;

(ⅱ)若是兩個不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分15分).

已知分別為橢圓

上、下焦點,其中也是拋物線的焦點,

在第二象限的交點,且。

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點P(1,3)和圓,過點P的動直線與圓相交于不同的兩點A,B,在線段AB取一點Q,滿足:,)。求證:點Q總在某定直線上。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點分別為、,過的直線與橢圓相交于A、B兩點。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習(xí)冊答案