(本小題共12分)如圖,已知⊥平面,,是正三角形,,且的中點

   (1)求證:∥平面;

   (2)求證:平面BCE⊥平面

(Ⅰ)    (Ⅱ)   (Ⅲ)


解析:

(1)取CE中點P,連結FP、BP,

FCD的中點,∴FPDE,且FP=

ABDE,且AB=ABFP,且AB=FP

ABPF為平行四邊形,∴AFBP.…………4分

又∵AF平面BCE,BP平面BCE,

AF∥平面BCE …………6分     

   (2)∵△ACD為正三角形,∴AFCD

AB⊥平面ACD,DE//AB

DE⊥平面ACD   又AF平面ACD

DEAF

AFCD,CDDE=D

AF⊥平面CDE …………10分又BPAF  ∴BP⊥平面CDE

又∵BP平面BCE∴平面BCE⊥平面CDE   …………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年黑龍江哈爾濱市高三第五次月考理科數(shù)學試卷(解析版) 題型:解答題

(本小題共12分)

如圖,已知直線l與拋物線相切于點P(2,1),且與x軸交于點A,O為坐標原點,

定點B的坐標為(2,0).

(1)若動點M滿足,求點M的軌跡C;

(2)若過點B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年黑龍江哈爾濱市高三第五次月考理科數(shù)學試卷(解析版) 題型:解答題

(本小題共12分)

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,QAD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=

(1)求證:平面PQB⊥平面PAD

(2)若二面角M-BQ-C為30°,設PM=tMC,試確定t的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年北京市高三階段考試(二)文科數(shù)學試卷(解析版) 題型:解答題

(本小題共12分)如圖,四邊形是矩形,平面,上一點,平面,點,分別是的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年內蒙古呼倫貝爾市高三第四次模擬考試文科數(shù)學試卷 題型:解答題

(本小題共12分)如圖所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,

F為CE上的點,且BF⊥平面ACE 

(1)求證:AE⊥平面BCE;

(2)求證:AE∥平面BFD;

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年陜西省漢中市漢臺區(qū)高二上學期期末數(shù)學文卷 題型:解答題

(本小題共12分)如圖,△ACD是等邊三角形,△ABC是等腰直角

三角形,∠ACB=90°,BD交AC于E,AB=2.

(1)求cos∠CBE的值;

(2)求AE。

 

查看答案和解析>>

同步練習冊答案