10.若曲線的焦點(diǎn)恰好是曲線的右焦點(diǎn),且交點(diǎn)的連線過點(diǎn),則曲線的離心率為
A.B.C.D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知焦點(diǎn)在x軸上,離心率為的橢圓的一個頂點(diǎn)是拋物線的焦點(diǎn),過橢圓右焦點(diǎn)F的直線l交橢圓于A、B兩點(diǎn),交y軸于點(diǎn)M,且
(1)求橢圓的方程;
(2)證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
設(shè)橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個點(diǎn),將其坐標(biāo)記錄于下表中:
x
3
—2
4


y

0
—4

-
 
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交于不同兩點(diǎn),請問是否存在這樣的
直線過拋物線的焦點(diǎn)?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)我國計(jì)劃發(fā)射火星探測器,該探測器的運(yùn)行軌道是以火星(其半徑百公里)的中心為一個焦點(diǎn)的橢圓. 如圖,已知探測器的近火星點(diǎn)(軌道上離火星表面最近的點(diǎn))到火星表面的距離為百公里,遠(yuǎn)火星點(diǎn)(軌道上離火星表面最遠(yuǎn)的點(diǎn))到火星表面的距離為800百公里. 假定探測器由近火星點(diǎn)第一次逆時針運(yùn)行到與軌道中心的距離為百公里時進(jìn)行變軌,其中分別為橢圓的長半軸、短半軸的長,求此時探測器與火星表面的距離(精確到1百公里).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知,橢圓C的方程為,、分別為橢圓C的兩個焦點(diǎn),設(shè)為橢圓C上一點(diǎn),存在以為圓心的外切、與內(nèi)切
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)作斜率為的直線與橢圓C相交于A、B兩點(diǎn),與軸相交于點(diǎn)D,若
的值;
(Ⅲ)已知真命題:“如果點(diǎn)T()在橢圓上,那么過點(diǎn)T
的橢圓的切線方程為=1.”利用上述結(jié)論,解答下面問題:
已知點(diǎn)Q是直線上的動點(diǎn),過點(diǎn)Q作橢圓C的兩條切線QM、QN,
M、N為切點(diǎn),問直線MN是否過定點(diǎn)?若是,請求出定點(diǎn)坐標(biāo);若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4-1:幾何證明選講
△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于C,弦BD∥MN,AC、BD交于點(diǎn)E
(1)求證:△ABE≌△ACD
(2)AB=6,BC=4,求AE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,橢圓C:的右焦點(diǎn)為,直線的方程為,點(diǎn)A在直線上,線段AF交橢圓C于點(diǎn)B,若,則直線AF的傾斜角的大小為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),則直線和曲線的大致圖形可以是                                                       (     )
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓中心在原點(diǎn),一個焦點(diǎn)為(,0),且長軸長是短軸長的2倍,則該橢圓的標(biāo)準(zhǔn)方程是      

查看答案和解析>>

同步練習(xí)冊答案