設(shè)雙曲線C:-=1(a>0,b>0)的右焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).若以F為圓心,FO為半徑的圓與雙曲線C的漸近線y=x交于點(diǎn)A(不同于O點(diǎn)),則△OAF的面積為_(kāi)_______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知直線l:kx-y+1+2k=0(k∈R).
(1)證明:直線l過(guò)定點(diǎn);
(2)若直線l不經(jīng)過(guò)第四象限,求k的取值范圍;
(3)若直線l交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,O為坐標(biāo)原點(diǎn),設(shè)△AOB的面積為S,求S的最小值及此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知:圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A,B兩點(diǎn),且|AB|=2時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓:+=1(0<b<2),左、右焦點(diǎn)分別為F1,F2,過(guò)F1的直線l交橢圓于A,B兩點(diǎn),若|BF2|+|AF2|的最大值為5,則b的值是( )
A.1 B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知F為雙曲線C:x2-my2=3m(m>0)的一個(gè)焦點(diǎn),則點(diǎn)F到C的一條漸近線的距離為( )
A. B.3
C.m D.3m
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)F是雙曲線-=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過(guò)點(diǎn)F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABE是銳角三角形,則該雙曲線的離心率e的取值范圍是( )
A.(1,2) B.(,2)
C.(,2) D.(2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線y2=2px(p>0)的焦點(diǎn)弦AB的兩端點(diǎn)坐標(biāo)分別為A(x1,y1),B(x2,y2),則的值一定等于( )
A.-4 B.4
C.p2 D.-p2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若動(dòng)點(diǎn)P在曲線y=2x2+1上移動(dòng),則點(diǎn)P與點(diǎn)Q(0,-1)連線中點(diǎn)的軌跡方程是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在“世界讀書日”前夕,為了了解某地5 000名居民某天的閱讀時(shí)間,從中抽取了200名居民的閱讀時(shí)間進(jìn)行統(tǒng)計(jì)分析.在這個(gè)問(wèn)題中,5 000名居民的閱讀時(shí)間的全體是( )
A.總體
B.個(gè)體
C.樣本的容量
D.從總體中抽取的一個(gè)樣本
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com