已知函數(shù)f(x)=(2cos2x-1)sin2x+cos4x

(1)求f(x)的最小正周期及最大值。

(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若cosB=,f()=-,且角A為鈍角,求sinC

 

(1)

(2)

【解析】(1)f(x)=(2cos2x-1)sin2x+cos4x

=cos2xsin2x+cos4x

=sin4x+cos4x

=sin(4x+)

∴最小正周期T=

當(dāng)4x+=+2k(k∈Z),即x=+(k∈Z)時(shí),f(x)max=

故最小正周期為,最大值為

(2)∵f()=-,

sin(4×+)=-sin(2A+)=-

又A為鈍角,所以2A+=,即A=

由cosB=得,sinB=

又sinC=sin[π-(A+B)]= =sin(A+B)=sinAcosB+cosAsinB

=×+(-=

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科函數(shù)與方程(解析版) 題型:填空題

關(guān)于x的實(shí)系數(shù)方程的一個(gè)根在區(qū)間[0,1]上,另一個(gè)根在區(qū)間[1,2]上,則2a+3b的最大值為 。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科二項(xiàng)式定理與性質(zhì)(解析版) 題型:填空題

=xn+…+ax3+bx2+…+1(n∈N*),且a∶b=3∶1,那么n=_____.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科兩角和與差的三角函數(shù)、倍角公式(解析版) 題型:選擇題

已知>0,函數(shù)f(x)=sin(x+)在(,)上單調(diào)遞減,則的取值范圍是(    )

A.[, ]

B.[, ]

C. [0,]

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科不等式選講(解析版) 題型:解答題

已知函數(shù)f(x)=|x-a|,其中a>1.

(1)當(dāng)a=2時(shí),求不等式f(x)≥4-|x-4|的解集;

(2)已知關(guān)于x的不等式|f(2x+a)-2f(x)|≤2的解集為{x|1≤x≤2},求a的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科三角函數(shù)的圖象與性質(zhì)(解析版) 題型:選擇題

設(shè)當(dāng)x=θ時(shí),函數(shù)f(x)=sinx-2cosx取得最大值,則cosθ= (     )

A.-

B.

C.-

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文解一元二次不等式、分式不等式、簡單高次不等式(解析版) 題型:選擇題

不等式的解集是(  )

A.

B.

C.

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題

如圖,是拋物線為上的一點(diǎn),以S為圓心,r為半徑()做圓,分別交x軸于A,B兩點(diǎn),連結(jié)并延長SA、SB,分別交拋物線于C、D兩點(diǎn)。

(1)求證:直線CD的斜率為定值;

(2)延長DC交x軸負(fù)半軸于點(diǎn)E,若EC : ED = 1 : 3,求的值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科選擇題專項(xiàng)訓(xùn)練(解析版) 題型:選擇題

若函數(shù)在區(qū)間[0,1]上的最小值等于-3,則實(shí)數(shù)的取值范圍是 (    )

A. B.

C. D.

 

查看答案和解析>>

同步練習(xí)冊答案