【題目】已知i為虛數單位,下列說法中正確的是( )
A.若復數z滿足,則復數z對應的點在以為圓心,為半徑的圓上
B.若復數z滿足,則復數
C.復數的模實質上就是復平面內復數對應的點到原點的距離,也就是復數對應的向量的模
D.復數對應的向量為,復數對應的向量為,若,則
科目:高中數學 來源: 題型:
【題目】已知拋物線經過點,過A作兩條不同直線,其中直線關于直線對稱.
(1)求拋物線E的方程及其準線方程;
(2)設直線分別交拋物線E于兩點(均不與A重合),若以線段為直徑的圓與拋物線E的準線相切,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.命題“”的否定是“”
B.命題“已知,若則或”是真命題
C.命題“若則函數只有一個零點”的逆命題為真命題
D.“在上恒成立”在上恒成立
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數的底數.
(Ⅰ)討論f(x)的單調性;
(Ⅱ)證明:當x>1時,g(x)>0;
(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲,乙兩人進行射擊比賽,各射擊局,每局射擊次,射擊中目標得分,未命中目標得分,兩人局的得分情況如下:
甲 | ||||
乙 |
(1)若從甲的局比賽中,隨機選取局,求這局的得分恰好相等的概率;
(2)從甲,乙兩人的局比賽中隨機各選取局,記這局的得分和為,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設不等式mx2-2x-m+1<0對于滿足|m|≤2的一切m的值都成立,求x的取值范圍.
【答案】
【解析】
令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)<0對滿足|m|≤2的一切m的值都成立,利用一次函數的單調性可得:f(﹣2)<0,f(2)<0.解出即可.
令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)<0對滿足|m|≤2的一切m的值都成立,
則需要f(﹣2)<0,f(2)<0.
解不等式組,解得,
∴x的取值范圍是.
【點睛】
本題考查了一次函數的單調性、一元二次不等式的解法,考查了轉化方法,考查了推理能力與計算能力,屬于中檔題.
【題型】解答題
【結束】
21
【題目】某廠有一批長為18m的條形鋼板,可以割成1.8m和1.5m長的零件.它們的加工費分別為每個1元和0.6元.售價分別為20元和15元,總加工費要求不超過8元.問如何下料能獲得最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com