【題目】為了解本市居民的生活成本,甲乙丙三名同學(xué)利用假期分別對三個社區(qū)進(jìn)行了“家庭每月日常消費(fèi)額”的調(diào)查.他們將調(diào)查所得的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),記甲乙丙所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為,,,則它們的大小關(guān)系為__________.

(甲)

(乙)

(丙)

【答案】

【解析】

第二組數(shù)據(jù)是單峰的每一個小長方形的差別比較小,數(shù)字?jǐn)?shù)據(jù)較分散,各個段內(nèi)分布均勻,第一組數(shù)據(jù)的兩端數(shù)字較多,絕大部分?jǐn)?shù)字都處在兩端最分散,而第三組數(shù)據(jù)絕大部分?jǐn)?shù)字都在平均數(shù)左右,是集中,由此得到結(jié)果.

解:根據(jù)三個頻率分步直方圖知,

第一組數(shù)據(jù)的兩端數(shù)字較多,絕大部分?jǐn)?shù)字都處在兩端數(shù)據(jù)偏離平均數(shù)遠(yuǎn),最分散,其方差最大;

第二組數(shù)據(jù)絕大部分?jǐn)?shù)字都在平均數(shù)左右,數(shù)據(jù)最集中,故其方差最小,

而第三組數(shù)據(jù)是單峰的每一個小長方形的差別比較小,數(shù)字分布均勻,數(shù)據(jù)不如第一組偏離平均數(shù)大,方差比第一組中數(shù)據(jù)中的方差小,

總上可知,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年諾貝爾生理學(xué)或醫(yī)學(xué)獎獲得者威廉·凱林(WilliamG.KaelinJr)在研究腎癌的抑制劑過程中使用的輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內(nèi)勻速滴下液體(滴管內(nèi)液體忽略不計),設(shè)輸液開始后分鐘,瓶內(nèi)液面與進(jìn)氣管的距離為厘米,已知當(dāng)時,.如果瓶內(nèi)的藥液恰好分鐘滴完.則函數(shù)的圖像為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式: ,

參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)今年1月,2月,3月患某種傳染病的人數(shù)分別為42,48,52.為了預(yù)測以后各月的患病人數(shù),甲選擇了模型,乙選擇了模型,其中為患病人數(shù),為月份數(shù),a,bc,pq,r都是常數(shù).結(jié)果4月,5月,6月份的患病人數(shù)分別為5457,58.

1)求ab,cp,qr的值;

2)你認(rèn)為誰選擇的模型好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于莖葉圖的說法,結(jié)論錯誤的一個是( )

A. 甲的極差是29 B. 甲的中位數(shù)是25

C. 乙的眾數(shù)是21 D. 甲的平均數(shù)比乙的大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面是邊長為3的正方形,平面,,與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).若函數(shù)f(x)有兩個極值點(diǎn)x1,x2,記過點(diǎn)A(x1,f(x1))和B(x2,f(x2))的直線斜率為k,若0<k≤2e,則實(shí)數(shù)m的取值范圍為(  )

A. B. (e,2e] C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若對任意恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時,若函數(shù)有兩個極值點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,的中點(diǎn).

1)求證:平面

2)求證:平面平面.(只需在下面橫線上填寫給出的如下結(jié)論的序號:①平面,②平面,③,④,⑤

證明:(1)設(shè),連接.因?yàn)榈酌?/span>是正方形,所以的中點(diǎn),又的中點(diǎn),所以_________.因?yàn)?/span>平面,____________,所以平面.

2)因?yàn)?/span>平面平面,所以___________,因?yàn)榈酌?/span>是正方形,所以_______,又因?yàn)?/span>平面平面,所以_________.平面,所以平面平面.

查看答案和解析>>

同步練習(xí)冊答案