(滿分14分) 設(shè)不等式組所表示的平面區(qū)域?yàn)?sub>,記內(nèi)的整點(diǎn)個(gè)數(shù)為,(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn)).
(1)求、;
(2)猜想的通項(xiàng)公式(不需證明);
(3)記;,
若求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009江蘇卷)(本小題滿分14分)
設(shè)是公差不為零的等差數(shù)列,為其前項(xiàng)和,滿足。
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;
(2)試求所有的正整數(shù),使得為數(shù)列中的項(xiàng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)設(shè)函數(shù)
(I)求函數(shù)的最小正周期及函數(shù)的單調(diào)遞增區(qū)間 ; (II)若,是否存在實(shí)數(shù)m,使函數(shù)?若存在,請(qǐng)求出m的取值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)設(shè)函數(shù)
(I)求函數(shù)的最小正周期及函數(shù)的單調(diào)遞增區(qū)間 ; (II)若,是否存在實(shí)數(shù)m,使函數(shù)?若存在,請(qǐng)求出m的取值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省高考沖刺強(qiáng)化訓(xùn)練試卷十三文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)設(shè)數(shù)列{an}和{bn}滿足a1=b1=6,a2=b2=4,a3=b3=3,且數(shù)列{an+1-an}是等差數(shù)列,數(shù)列{bn―2}是等比數(shù)列(n∈N*).
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
。á颍┦欠翊嬖趉∈N*,使?若存在,求出k,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年深圳市高三第一次調(diào)研考試數(shù)學(xué)文卷 題型:解答題
((本小題滿分14分)
設(shè)數(shù)列是公差為的等差數(shù)列,其前項(xiàng)和為.
(1)已知,,
(ⅰ)求當(dāng)時(shí),的最小值;
(ⅱ)當(dāng)時(shí),求證:;
(2)是否存在實(shí)數(shù),使得對(duì)任意正整數(shù),關(guān)于的不等式的最小正整數(shù)解為?若存在,則求的取值范圍;若不存在,則說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com