4.已知點P是⊙O:x2+y2=9上的任意一點,過P作PD垂直x軸于D,動點Q滿足$\overrightarrow{DQ}=\frac{2}{3}\overrightarrow{DP}$.
(Ⅰ)求動點Q的軌跡方程;
(Ⅱ)動點Q的軌跡上存在兩點M、N,關(guān)于點E(1,1)對稱,求直線MN的方程.

分析 (1)設(shè)Q(x,y),利用向量的坐標運算,結(jié)合在⊙O上即可得到點Q的軌跡方程;
(2)對于存在性問題的解決方法,可假設(shè)存在.由條件(1,1)是線段MN的中點,利用中點坐標公式及橢圓的方程式,得到直線MN的斜率值,從而求得直線的方程.結(jié)果表明存在.

解答 解:(1)設(shè)P(x0,y0),Q(x,y),依題意,則點D的坐標為D(x0,0)(1分)
∴$\overrightarrow{DQ}$=(x-x0,y),$\overrightarrow{DP}$=(0,y0)(2分)
又$\overrightarrow{DQ}=\frac{2}{3}\overrightarrow{DP}$,
∴x0=x,y0=$\frac{3}{2}$y(4分)
∵P在⊙O上,故x02+y02=9,
∴$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$(5分)
∴點Q的軌跡方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$(6分)
(2)假設(shè)橢圓$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$上存在兩點M(x1,y1),N(x2,y2),關(guān)于點E(1,1)對稱,則E(1,1)是線段MN的中點,且有x1+x2=2,y1+y2=2
M(x1,y1),N(x2,y2)代入橢圓,作差,整理可得kMN=-$\frac{4}{9}$
∴直線MN的方程為4x+9y-13=0
將直線MN的方程代入橢圓方程檢驗得:52x2-104x-155=0則△>0有實根
∴橢圓上存在兩點M、N,關(guān)于點E(1,1)對稱,此時直線MN的方程為4x+9y-13=0(14分)

點評 本題在向量與圓錐曲線交匯處命題,考查了向量的坐標運算、曲線方程的求法、橢圓的定義以及等價轉(zhuǎn)化能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an},公差d>0,前n項和為Sn,且滿足a2a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項公式及前n項和Sn;
(2)設(shè)${b_n}=\frac{S_n}{{n-\frac{1}{2}}}$,
①求證{bn}是等差數(shù)列.
②求數(shù)列$\left\{{\frac{1}{{{b_n}•{b_{n+1}}}}}\right\}$的前n項和Tn
③求$\lim_{n→∞}{T_n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給定函數(shù)①$y={x^{\frac{1}{2}}}$,②$y=x+\frac{1}{x}$,③y=|x-1|,④y=2x+1,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求下列各式的值:
(1)2$\sqrt{3}×\root{3}{{3\frac{3}{8}}}-\sqrt{12}$
(2)(log25+log4125)•$\frac{{{{log}_3}2}}{{{{log}_{\sqrt{3}}}5}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知各項不為0的等差數(shù)列{an}滿足a4-2a72+3a8=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b2b8b11等于8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.$cos(-\frac{π}{3})•cos(π+\frac{π}{3})•cos(π-\frac{π}{3})$=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.對于實數(shù)m,m>0,存在函數(shù)f(x)=ax2(a>0)圖象上兩點A、B,點A、B橫坐標分別為1、m,使得$\overrightarrow{OA}$=λ(|$\overrightarrow{OB}$|$\overrightarrow{OC}$+|$\overrightarrow{OC}$|$\overrightarrow{OB}$)(λ為常數(shù)),其中點C(c,0)(c>0),則實數(shù)m的取值范圍為( 。
A.(1,+∞)B.($\sqrt{2}$,+∞)C.(2,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x+x-1=3,那么x2-x-2的值為( 。
A.$±3\sqrt{5}$B.$-\sqrt{5}$C.$3\sqrt{5}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(2x)的定義域是[2,4],則函數(shù)$f({\frac{x}{2}})$的定義域為( 。
A.[1,2]B.$[{\frac{1}{2},1}]$C.[2,8]D.[8,32]

查看答案和解析>>

同步練習(xí)冊答案