如圖,點(diǎn)是以線段為直徑的圓上一點(diǎn),于點(diǎn),過(guò)點(diǎn)作圓的切線,與的延長(zhǎng)線交于點(diǎn),點(diǎn)是的中點(diǎn),連結(jié)并延長(zhǎng)與相交于點(diǎn),延長(zhǎng)與的延長(zhǎng)線相交于點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:是圓的切線.
(Ⅰ)詳見(jiàn)試題解析;(Ⅱ)詳見(jiàn)試題解析.
解析試題分析:(Ⅰ)由,可得,從而可得
通過(guò)等量代換及題設(shè)“點(diǎn)是的中點(diǎn)”可得.
(Ⅱ)目標(biāo)是要證是直角,連結(jié)便可看出只要證得是等腰三角形即可.顯然是等腰三角形。因?yàn)橹睆缴系膱A周角是直角,,所以是直角三角形. 由(Ⅰ)得所以,從而本題得證.
試題解析:證明:(Ⅰ) 是圓的直徑,是圓的切線,
.又,
.
可以得知, .
..
是的中點(diǎn),.. 5分
(Ⅱ)連結(jié).
是圓的直徑,.
在中,由(Ⅰ)得知是斜邊的中點(diǎn),
..
又,.
是圓的切線,
,
是圓的切線. 10分
考點(diǎn):1、相似三角形;2、圓的性質(zhì);3、等量代換;4、直角三角形斜邊上的中線;5、幾何證明
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(拓展深化)如圖,已知△ABC中的兩條角平分線AD和CE相交于H,∠B=60°,F(xiàn)在AC上,且AE=AF.
(1)證明:B、D、H、E四點(diǎn)共圓;
(2)證明:CE平分∠DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四點(diǎn)在同一圓上,與的延長(zhǎng)線交于點(diǎn),點(diǎn)在的延長(zhǎng)線上.
(1)若,,求的值;
(2)若,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連結(jié)EC、CD.
(Ⅰ)求證:直線AB是⊙O的切線;
(Ⅱ)若tan∠CED=,⊙O的半徑為3,求OA的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知切⊙于點(diǎn)E,割線PBA交⊙于A、B兩點(diǎn),∠APE的平分線和AE、BE分別交于點(diǎn)C、D.求證:
(Ⅰ);
(Ⅱ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知⊙O的半徑為1,MN是⊙O的直徑,過(guò)M點(diǎn)作⊙O的切線AM,C是AM的中點(diǎn),AN交⊙O于B點(diǎn),若四邊形BCON是平行四邊形.
(Ⅰ)求AM的長(zhǎng);
(Ⅱ)求sin∠ANC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在中,是的角平分線,的外接圓交于,.
(1)求證:;
(2)當(dāng)時(shí),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖AB為圓O直徑,P為圓O外一點(diǎn),過(guò)P點(diǎn)作PC⊥AB,
垂是為C,PC交圓O于D點(diǎn),PA交圓O于E點(diǎn),BE交PC于F點(diǎn)。
(I)求證:∠PFE=∠PAB;
(II)求證:CD2=CF·CP.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com