在平面直角坐標系中,第一象限有系列圓On(n∈N*),所有圓均與x軸和直線
3
x-y=0相切,且任何相鄰兩圓外切:圓On的半徑為rn,其中rn>rn+1>0,若圓O1的半徑為r1=1,則rn等于
 
考點:圓的切線方程
專題:直線與圓
分析:由題意畫出圖形,利用三角形相似對應邊成比例得到rn與rn+1的關系,進一步得到數(shù)列{rn}構成以1為首項,以
1
3
為公比的等比數(shù)列,則rn可求.
解答: 解:如圖,

由相似三角形對應邊成比例得,
rn
rn+1
=
2rn
rn-rn+1
,即3rn+1=rn
∵r1=1≠0,
rn+1
rn
=
1
3
,
則數(shù)列{rn}構成以1為首項,以
1
3
為公比的等比數(shù)列.
rn=(
1
3
)n-1

故答案為:(
1
3
)n-1
(n∈N*).
點評:本題考查了圓的切線方程,考查了等比數(shù)列的通項公式,體現(xiàn)了數(shù)形結合的解題思想方法,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在一次招聘考試中,有12道備選題,其中8道A類題,4道B類題,每位考生都要在其中隨機抽出3道題回答
(Ⅰ)求某考生至少抽到1道B類題的概率;
(Ⅱ)已知所抽出的3道題中有2道A類題,1道B類題,設該考生答對每道A類題的概率都是
3
5
,答對每道B類題的概率都是
4
5
,且各題答對與否相互獨立,用X表示該考生答對題的個數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖放置的邊長為1的正方形PABC沿x軸滾動,點B恰好經過原點.設頂點P(x,y)的軌跡方程是y=f(x),則對函數(shù)y=f(x)有下列判斷:
①函數(shù)y=f(x)是偶函數(shù);
②對任意的x∈R,都有f(x+2)=f(x-2);
③函數(shù)y=f(x)在區(qū)間[2,3]上單調遞減;
2
0
f(x)dx=
π+1
2

其中判斷正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(2,-1)引直線與拋物線y=x2只有一個公共點,這樣的直線共有
 
條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,若a3+a9-a5=6,則S13=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義在R上的函數(shù)f(x)滿足f(1)=1,f′(x)>
1
3
,其中f′(x)是f(x)的導函數(shù),則不等式
f(x3)<
1
3
x3+
2
3
的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l1:ax+(3-a)y+1=0,l2:2x-y=0,若l1⊥l2,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=0.3-0.2,b=log0.50.8,c=log0.53,那么a,b,c的大小關系是( 。
A、a<b<c
B、c<b<a
C、c<a<b
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|-2<x<1},N={x|-1<x<2},則M∩N=( 。
A、{x|-2<x<2}
B、{x|-1<x<2}
C、{x|-1<x<1}
D、{x|-2<x<1}

查看答案和解析>>

同步練習冊答案