11.命題:?x∈R,cos x<2的否定是?x∈R,cosx≥2.

分析 根據(jù)命題“?x∈R,cosx<2”是全稱命題,其否定為特稱命題,即“?x∈R,cosx≥2”.從而得到本題答案.

解答 解:∵命題“?x∈R,cosx<2”是全稱命題.
∴命題的否定是存在x值,使cosx<2不成立,
即“?x∈R,cosx≥2”.
故答案為:?x∈R,cos x≥2.

點評 本題給出全稱命題,求該命題的否定形式.著重考查了含有量詞的命題的否定、全稱命題和特稱命題等知識點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=$\frac{ln|x|}{{x}^{2}}+\frac{1}{{x}^{2}}$在[-2,2]的圖象大致為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若$\left\{{\sqrt{a_n}}\right\}$是首項為4,公比為2的等比數(shù)列,則log4a2016=2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長為4,離心率為$\frac{1}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓C的右焦點為F,直線3x-2y=0與橢圓C在第一象限內(nèi)的交點為P,若直線4x+3y+m=0與以PF為直徑的圓相切,求實數(shù)m值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=x•ex+f′(1)•x2,則f′(1)=-2e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的一條漸近線的傾斜角為150°,則b的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)列{an}滿足a1=1,a2=$\frac{1}{2}$,并且an(an-1+an+1)=2an+1an-1(n≥2),則a2016=( 。
A.2016B.2017C.$\frac{1}{2016}$D.$\frac{1}{2017}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}滿足a1=30,且an+1=an+2n,n∈N*,那么a45=2010.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)f(x)=arcsinx,則f″(0)=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案