【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P為橢圓C上一點(diǎn),且PF2垂直于x軸,連結(jié)PF1并延長(zhǎng)交橢圓于另一點(diǎn)Q,設(shè)=λ.
(1)若點(diǎn)P的坐標(biāo)為(2,3),求橢圓C的方程及λ的值;
(2)若4≤λ≤5,求橢圓C的離心率的取值范圍.
【答案】(1);(2) []
【解析】
(1)由PF2⊥x軸,且點(diǎn)P的坐標(biāo)為(2,3),可得關(guān)于a,b,c的方程,聯(lián)立求得a,b的值,則橢圓方程可求,寫出直線PF1的方程,與橢圓方程聯(lián)立,解得Q的橫坐標(biāo),由λ=求解λ的值;
(2)由PF2⊥x軸,不妨設(shè)P在x軸上方,可得P(c,y0),y0>0,設(shè)Q(x1,y1),由P在橢圓上,解得P(c,),再由已知向量等式得Q的坐標(biāo),結(jié)合點(diǎn)Q在橢圓上,可得.再由4≤λ≤5,即可求得橢圓C的離心率的取值范圍.
解:(1)∵PF2⊥x軸,且點(diǎn)P的坐標(biāo)為(2,3),
∴a2-b2=c2=4,=1,
解得:a2=16,b2=12,
∴橢圓C的方程為=1.
∴F1(-2,0),直線PF1的方程為y=(x+2),
將y=(x+2)代入橢圓方程,解得xQ=-,
∴λ=;
(2)∵PF2⊥x軸,不妨設(shè)P在x軸上方,
P(c,y0),y0>0,設(shè)Q(x1,y1).
∵P在橢圓上,∴=1,解得y0=,即P(c,).
∵F1(-c,0),由PQ=λF1Q,得c-x1=λ(-c-x1),,
解得x1=-c,y1=-,∴Q(-c,-),
∵點(diǎn)Q在橢圓上,∴=1,即(λ+1)2e2+(1-e2)=(λ-1)2.
∴(λ+2)e2=λ-2,從而e2=.
∵4≤λ≤5,∴,解得.
∴橢圓C的離心率的取值范圍是[].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在正整數(shù)n的各位數(shù)字中,共含有個(gè)1,個(gè)2,,個(gè)n.證明:并確定使等號(hào)成立的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
年齡x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收縮壓單位 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:,,
請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;的值精確到
若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍及以上,則為高度高血壓人群一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三點(diǎn)A(a,0),B(0,b),C(2,2),其中a>0,b>0.
(1)若O是坐標(biāo)原點(diǎn),且四邊形OACB是平行四邊形,試求a,b的值.
(2)若A,B,C三點(diǎn)共線,試求a+b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,已知,且2an+1=an+1(n∈N*).
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)若bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓與軸交于、兩點(diǎn),動(dòng)直線()與軸、軸分別交于點(diǎn)、,與圓交于、兩點(diǎn)(點(diǎn)縱坐標(biāo)大于點(diǎn)縱坐標(biāo)).
(1)若,點(diǎn)與點(diǎn)重合,求點(diǎn)的坐標(biāo);
(2)若,,求直線將圓分成的劣弧與優(yōu)弧之比;
(3)若,設(shè)直線、的斜率分別為、,是否存在實(shí)數(shù)使得?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2018年省運(yùn)會(huì),寧德市某體育館需要重新鋪設(shè)塑膠跑道.已知每毫米厚的跑道的鋪設(shè)成本為10萬(wàn)元,跑道平均每年的維護(hù)費(fèi)C(單位:萬(wàn)元)與跑道厚度x(單位:毫米)的關(guān)系為C(x)=,x∈[10,15].若跑道厚度為10毫米,則平均每年的維護(hù)費(fèi)需要9萬(wàn)元.設(shè)總費(fèi)用f(x)為跑道鋪設(shè)費(fèi)用與10年維護(hù)費(fèi)之和.
(1)求k的值與總費(fèi)用f(x)的表達(dá)式;
(2)塑膠跑道鋪設(shè)多厚時(shí),總費(fèi)用f(x)最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.
(1)若圓的切線在軸、軸上的截距相等,求切線方程;
(2)從圓外一點(diǎn)向該圓引一條切線,切點(diǎn)為,且有(為坐標(biāo)原點(diǎn)),求使取得最小值時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,.
(1)解關(guān)于的方程;
(2)設(shè),時(shí),對(duì)任意,總有成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com