如果函數(shù)f(x)=x3+ax2+(a-4)x(a∈R)的導函數(shù)f′(x)是偶函數(shù),則曲線y=f(x)在原點處的切線方程是( 。
分析:先由求導公式求出f′(x),根據(jù)偶函數(shù)的性質,可得f′(-x)=f′(x),從而求出a的值,然后利用導數(shù)的幾何意義求出切線的斜率,進而寫出切線方程.
解答:解:f′(x)=3x2+2ax+(a-4),
∵f′(x)是偶函數(shù),
∴3(-x)2+2a(-x)+(a-4)=3x2+2ax+(a-4),
∴a=0,
∴k=f′(0)=-4,
∴曲線y=f(x)在原點處的切線方程為y=-4x.
故選A.
點評:本題考查偶函數(shù)的性質以及導數(shù)的幾何意義,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

14、有六個命題:
①如果函數(shù)y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關于x=a對稱;②如果函數(shù)f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關于x=0對稱;③如果函數(shù)y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關于x=a對稱;④函數(shù)y=f(x)與
f(2a-x)的圖象關于x=a對稱;⑤函數(shù)y=f(a-x)與y=f(a+x)的圖象關于x=a對稱;⑥函數(shù)y=f(a-x)與y=f(a+x)的圖象關于x=0對稱.則正確的命題是
①③④⑥
(請將你認為正確的命題前的序號全部填入題后橫線上,少填、填錯均不得分).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為A,若存在非零實數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調函數(shù).如果定義域為[0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調函數(shù),那么實數(shù)m的取值范圍是(  )
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
,
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被函數(shù)g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
(2)記f(x)=x,g(x)=lnx,證明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)設f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

有六個命題:
①如果函數(shù)y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關于x=a對稱;②如果函數(shù)f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關于x=0對稱;③如果函數(shù)y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關于x=a對稱;④函數(shù)y=f(x)與
f(2a-x)的圖象關于x=a對稱;⑤函數(shù)y=f(a-x)與y=f(a+x)的圖象關于x=a對稱;⑥函數(shù)y=f(a-x)與y=f(a+x)的圖象關于x=0對稱.則正確的命題是________(請將你認為正確的命題前的序號全部填入題后橫線上,少填、填錯均不得分).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有六個命題:
①如果函數(shù)y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關于x=a對稱;②如果函數(shù)f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關于x=0對稱;③如果函數(shù)y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關于x=a對稱;④函數(shù)y=f(x)與
f(2a-x)的圖象關于x=a對稱;⑤函數(shù)y=f(a-x)與y=f(a+x)的圖象關于x=a對稱;⑥函數(shù)y=f(a-x)與y=f(a+x)的圖象關于x=0對稱.則正確的命題是______(請將你認為正確的命題前的序號全部填入題后橫線上,少填、填錯均不得分).

查看答案和解析>>

同步練習冊答案