7.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費xi和年銷售量yi(i=1,2,3,..8)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中:${w_i}=\sqrt{x_i}$    $\overline{w}$=$\sum_{i=1}^{8}$wi
(Ⅰ)根據(jù)散點圖判斷,y=a+bx與$y=c+d\sqrt{x}$,哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)根據(jù)(I)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x,根據(jù)(II)的結(jié)果回答下列問題:
(i)當(dāng)年宣傳費x=49時,年銷售量及年利潤的預(yù)報值時多少?
(ii)當(dāng)年宣傳費x為何值時,年利潤的預(yù)報值最大?并求出最大值

分析 (Ⅰ)根據(jù)散點圖,即可判斷出,
(Ⅱ)先建立中間量w=$\sqrt{x}$,建立y關(guān)于w的線性回歸方程,根據(jù)公式求出w,問題得以解決;
(Ⅲ)(i)年宣傳費x=49時,代入到回歸方程,計算即可,
(ii)求出預(yù)報值得方程,根據(jù)函數(shù)的性質(zhì),即可求出.

解答 解:(Ⅰ)由散點圖可以判斷,y=c+d$\sqrt{x}$適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型;
(Ⅱ)令w=$\sqrt{x}$,先建立y關(guān)于w的線性回歸方程,由于$\widehatbyelpxa$=$\frac{108.6}{1.6}$=68,
$\widehat{c}$=$\widehat{y}$-$\widehatsppx6cgw$=563-68×6.8=100.6,
所以y關(guān)于w的線性回歸方程為$\widehat{y}$=100.6+68w,
因此y關(guān)于x的回歸方程為$\widehat{y}$=100.6+68$\sqrt{x}$,
(Ⅲ)(i)由(Ⅱ)知,當(dāng)x=49時,年銷售量y的預(yù)報值$\widehat{y}$=100.6+68$\sqrt{49}$=576.6,
年利潤z的預(yù)報值$\widehat{z}$=576.6×0.2-49=66.32,
(ii)根據(jù)(Ⅱ)的結(jié)果可知,年利潤z的預(yù)報值$\widehat{z}$=0.2(100.6+68$\sqrt{x}$)-x=-x+13.6$\sqrt{x}$+20.12,
當(dāng)$\sqrt{x}$=$\frac{13.6}{2}$=6.8時,年利潤的預(yù)報值最大.

點評 本題主要考查了線性回歸方程和散點圖的問題,準(zhǔn)確的計算是本題的關(guān)鍵,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=sin2x-cos2x,則f(x)在$x∈[{0,\frac{π}{2}}]$時的值域是[-1,$\sqrt{2}$];若將函數(shù)y=f(x)的圖象向左平移a(a>0)個單位長度得到的圖象恰好關(guān)于直線$x=\frac{π}{4}$對稱,則實數(shù)a的最小值為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若數(shù)列{xn}滿足:$\frac{1}{{{x_{n+1}}}}-\frac{1}{x_n}$=d(d為常數(shù),n∈N*),則稱{xn}為調(diào)和數(shù)列.已知數(shù)列{an}為調(diào)和數(shù)列,且a1=1,$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+\frac{1}{a_5}$=15.
(Ⅰ)求數(shù)列{an}的通項an;
(Ⅱ)數(shù)列$\left\{{\frac{2^n}{a_n}}\right\}$的前n項和為Sn,是否存在正整數(shù)n,使得Sn≥2015?若存在,求出n的取值集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)的定義域為D,如果存在正實數(shù)k,對于任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,則稱函數(shù)f(x)為D上的“k型增函數(shù)”,已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=|x-a|-2a,若f(x)為R上的“2015型增函數(shù)”,則實數(shù)a的取值范圍是a<$\frac{2015}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow$=(5,2),則向量$\overrightarrow{a}$+$\overrightarrow$=(3,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.邊長分別為a、b的矩形,按圖中所示虛線剪裁后,可將兩個小矩形拼接成一個正四棱錐的底面,其余恰好拼接成該正四棱錐的4個側(cè)面,則$\frac{a}$的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某企業(yè)有兩個分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:cm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個分廠生產(chǎn)的零件中各抽出了500件,量其內(nèi)徑尺寸,得結(jié)果如表:
甲廠:
分組[29.86,
29.90 )
[29.90,
29.94)
[29.94,
29.98)
[29.9 8,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
頻數(shù)12638618292614
乙廠:
分組[29.86,
29.90)
[29.90,
29.94)
[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
頻數(shù)297185159766218
(1)試分別估計兩個分廠生產(chǎn)的零件的優(yōu)質(zhì)品率;
(2)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認(rèn)為“兩個分廠生產(chǎn)的零件的質(zhì)量有差異”.
甲廠乙廠合計
優(yōu)質(zhì)品
非優(yōu)質(zhì)品
合計
附K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,
p(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了保護環(huán)境,某化工廠政府部門的支持下,進(jìn)行技術(shù)改進(jìn):每天把工業(yè)廢氣轉(zhuǎn)化為某種化工產(chǎn)品和符合排放要求的氣體.該工廠日處理廢氣的能力不低于40噸但不超過70噸.經(jīng)測算,該工廠處理廢氣的成本y(元)與處理廢氣量x(噸)之間的函數(shù)關(guān)系可近似地表示為:y=2x2-120x+5000,且每處理1噸工業(yè)廢氣可得價值為60元的某種化工產(chǎn)品.
(1)判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤;如果不能獲利,為了保證工廠在每天生產(chǎn)中都不出現(xiàn)虧損現(xiàn)象,國家財政部門補貼至少每天多少元?
(2)若國家給予企業(yè)處理廢氣每噸70元財政補貼,當(dāng)工廠處理量為多少噸時,工廠處理每噸廢氣平均收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\frac{1}{x}+\frac{2}{y}$=1(x>0,y>0),求x+y的最小值.

查看答案和解析>>

同步練習(xí)冊答案