已知函數(shù)f(x)=|x-a|+(x>0),若f(x)≥恒成立,則是   
【答案】分析:由f(x)≥恒成立,變?yōu)閤|x-a|>x-1根據(jù)函數(shù)函數(shù)的圖象求a的取值范圍.
解答:解:由f(x)≥恒成立,變?yōu)閤|x-a|>x-1,令g(x)=x|x-a|,r(x)=x-1
1°當a≤0時,f(x)=x-a+≥2-a>(當且僅當x=1是等號成立)
∴a≤0時,f(x)≥恒成立;
2°當a>0時,f(x)≥恒成立,變?yōu)閤|x-a|>x-1,令g(x)=x|x-a|,r(x)=x-1
作出兩個函數(shù)的圖象,如圖a-1≤0,可得0<a≤2
綜上知a≤2
故答案為a≤2

以下是本題的一個錯誤解法,因為工具選擇的不當,造成答案錯誤,在時看時很合理的作法,不一定正確,本題的錯誤主要在分類不清,有興趣的同學可以看一下,汲取經(jīng)驗教訓
函數(shù) (x>0)
1°當a≤0時,f(x)=x-a+≥2-a>(當且僅當x=1是等號成立)
∴a≤0時,f(x)≥恒成立;
2°當a>0時,f(x)=
①x≥a時,f(x)≥恒成立,
∴2-a≥(當且僅當x=1是等號成立)
解得0<a≤
②x<a時,f(x)=a-x+在區(qū)間(0,+∞)上單調(diào)遞減,
函數(shù)f(x)的值域為R,“f(x)≥恒成立”不成立.
綜上a的取值范圍是 a≤
故答案為a≤
點評:考查應用函數(shù)的單調(diào)性求函數(shù)的最值,體現(xiàn)了分類討論的思想方法;不等式恒成立問題轉(zhuǎn)化為函數(shù)函數(shù)的圖象解決,體現(xiàn)了轉(zhuǎn)化的思想方法,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案