分析 通過(guò)余弦定理分別表示出cosC,cosA和cosB,令其大于0求得x的范圍.
解答 解:根據(jù)題意知$\left\{\begin{array}{l}{cosC=\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}=\frac{9+25-{x}^{2}}{30}>0}\\{cosA=\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}=\frac{25+{x}^{2}-9}{10x}>0}\\{cosB=\frac{9+{x}^{2}-25}{6x}>0}\end{array}\right.$,
解不等式得4<x<$\sqrt{34}$,
故答案為:(4,$\sqrt{34}$)
點(diǎn)評(píng) 本題主要考查了余弦定理的應(yīng)用.注重了對(duì)余弦定理公式靈活運(yùn)用的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<-$\frac{1}{e}$ | B. | a>-$\frac{1}{e}$ | C. | a<-$\frac{1}{2}$ | D. | a>-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若f′(x0)不存在,則曲線y=f(x)在點(diǎn)(x0,y0)處就沒(méi)有切線 | |
B. | 若曲線y=f(x)在點(diǎn)(x0,y0)處有切線,則f′(x0)必存在 | |
C. | 若f′(x0)不存在,則曲線y=f(x)在點(diǎn)(x0,y0)處的切線斜率不存在 | |
D. | 若曲線y=f(x)在點(diǎn)(x0,y0)處沒(méi)有切線,則f′(x0)有可能存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲 | 20 | 5 | 25 |
乙 | 10 | 15 | 25 |
合計(jì) | 30 | 20 | 50 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com