已知函數(shù)f(x)=ax-bxln x,其圖象經(jīng)過點(1,1),且在點(e,f(e))處的切線斜率為3.(e為自然對數(shù)的底數(shù)).
(1)求實數(shù)a、b的值;
(2)若k∈Z,且k<對任意x>1恒成立,求k的最大值;
(3)證明:2ln 2+3ln 3+…+nln n>(n-1)2(n∈N*,n>1).
【解】 (1)因為f(1)=1,所以a=1,
此時f(x)=x-bxln x,f′(x)=1-b(1+ln x),
依題意,f′(e)=1-b(1+ln e)=3,所以b=-1.
(2)由(1)知:f(x)=x+xln x,
當x>1時,
設h(x)=x-2-ln x,則h′(x)=1->0,h(x)在(1,+∞)上是增函數(shù).
因為h(3)=1-ln 3<0,h(4)=2-ln 4>0,
所以,存在x0∈(3,4),使h(x0)=0.
當x∈(1,x0)時,h(x)<0,g′(x)<0,即g(x)在(1,x0)上為減函數(shù);
同理g(x)在(x0,+∞)上為增函數(shù),從而g(x)的最小值為g(x0)=,
所以x0∈(3,4),k的最大值為3.
(3)證明 由(2)知,當x>1時,>3,
所以f(x)>3x-3,即x+xln x>3x-3,xln x>2x-3,
所以2ln 2+3ln 3+…+nln n>(2×2-3)+(2×3-3)+…+(2n-3)=2(2+3+…+n)-3(n-1)=2×-3n+3=n2-2n+1=(n-1)2(n∈N*,n>1).
科目:高中數(shù)學 來源: 題型:
某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖所示,一個地區(qū)分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,則不同的著方法共有( )種
A.72 B.60 C.48 D.24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com