設(shè)z=x+y,其中實數(shù)x,y滿足,若z的最大值為6,則z的最小值為(  )

A.-3 B.-2 C.-1 D.0

 

A

【解析】由z=x+y得y=-x+z,作出的區(qū)域BCO,平移直線y=-x+z,由圖象可知當直線經(jīng)過C時,直線的截距最大,此時z=6,由,解得所以k=3,解得B(-6,3),代入z=x+y得最小值為z=-6+3=-3,選A.

 

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:填空題

如圖所示是一個正方體的表面展開圖,A,B,C均為棱的中點,D是頂點,則在正方體中,異面直線AB和CD的夾角的余弦值為__________.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 解析幾何(解析版) 題型:填空題

雙曲線-y2=1的頂點到其漸近線的距離等于________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:解答題

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.

(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一結(jié)論;

(2)求多面體ABCDE的體積.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

已知正四棱錐S—ABCD中,SA=2,那么當該棱錐的體積最大時,它的高為(  )

A.1   B.   C.2   D.3

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:解答題

某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機產(chǎn)生.

(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);

(2)甲、乙兩同學依據(jù)自己對程序框圖的理解,各自編寫程序重復(fù)運行n次后,統(tǒng)計記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計表的部分數(shù)據(jù).

甲的頻數(shù)統(tǒng)計表(部分)

運行次數(shù)n

輸出y的值

為1的頻數(shù)

輸出y的值

為2的頻數(shù)

輸出y的值

為3的頻數(shù)

30

14

6

10

2 100

1 027

376

697

 

乙的頻數(shù)統(tǒng)計表(部分)

運行次數(shù)n

輸出y的值

為1的頻數(shù)

輸出y的值

為2的頻數(shù)

輸出y的值

為3的頻數(shù)

30

12

11

7

2 100

1 051

696

353

 

當n=2 100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數(shù)表示),并判斷兩位同學中哪一位所編程序符合算法要求的可能性較大;

(3)將按程序框圖正確編寫的程序運行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學期望.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:填空題

二項式(x+y)5的展開式中,含x2y3的項的系數(shù)是________.(用數(shù)字作答)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:填空題

(2013·孝感模擬)現(xiàn)有一根n節(jié)的竹竿,自上而下每節(jié)的長度依次構(gòu)成等差數(shù)列,最上面一節(jié)長為10 cm,最下面的三節(jié)長度之和為114 cm,第6節(jié)的長度是首節(jié)與末節(jié)長度的等比中項,則n=________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年吉林省延邊州高考復(fù)習質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列的前項和為,.

(1)求數(shù)列的通項公式;

(2)設(shè)log2an+1 ,求數(shù)列的前項和。

 

查看答案和解析>>

同步練習冊答案